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a b s t r a c t

This paper presents a method to estimate fuel moisture content (FMC) of Mediterranean

vegetation species from satellite images in the context of fire risk assessment. The relation-

ship between satellite images and field collected FMC data was based on two methodologies:

empirical relations and statistical models based on simulated reflectances derived from

radiative transfer models (RTM). Both models were applied to the same validation data set to

compare their performance. FMC of grassland and shrublands were estimated using a 5-year

time series (2001–2005) of Terra moderate resolution imaging spectroradiometer (MODIS)

images. The simulated reflectances were based on the leaf level PROSPECT coupled with the

canopy level SAILH RTM. The simulated spectra were generated for grasslands and shrub-

lands according to their biophysical parameters traits and FMC range. Both models, empiri-

cal and statistical models based on RTM, offered similar accuracy with better determination

coefficients for grasslands (r2 = 0.907, and 0.894, respectively) than for shrublands (r2 = 0.732

and 0.842, respectively). Although it is still necessary to test these equations in other areas

with analogous types of vegetation, preliminary tests indicate that the adjustments based

on simulated data offer similar results, but with greater robustness, than the empirical

approach.
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1. Introduction

Wildfires are a natural disturbance worldwide, being respon-

sible for an important share of global greenhouse gas

emissions (Palacios-Orueta et al., 2005), land use change

(Ahern et al., 2001), and soil degradation (Doerr et al., 2006).

Fires also have positive feedbacks in the vegetation natural

succession and soil properties, but these effects are very much

dependent on fire intensity and duration (Johnson and

Miyanishi, 2001).

Mediterranean ecosystems have co-existed with fires for

millennia, since summer drought makes them prone to fire

ignition and therefore can be considered a natural phenom-

enon (Naveh, 1989). However, recently the natural fire regimen

has changed, increasing the harmful effects of wildland fires,

both on environment and society. Climate change has not

been widely reported as a key issue in the changes in the

Mediterranean fire regime but land use changes as a result of

economic transition from agricultural to industrial societies

first, and then the increase in tourist-related land uses are

most commonly recognized as the main drivers of the recent

fire activity in the region (Vega-Garcia and Chuvieco, 2006).

Therefore, the growing urbanization of forested areas has

increased too the potential damage of fire on the wildland–

urban interface (Leone, 2003).

New strategies for earlier fire prevention and extinction are

required to handle these new threats and to improve the

management of the Mediterranean forests. Wildfire risk

evaluation systems provide an integrated approach for

managing resources at stake and reducing the negative

impact of wildland fires. These systems should include a

wide range of factors that are related to fire ignition, fire

propagation and fire vulnerability (Chuvieco et al., 2003b). Fuel

moisture content (FMC), defined as the proportion of water

over dry mass, has been the most extended measure of fire

ignition and fire propagation potential, and it has been widely

used for fire danger assessment (Blackmarr and Flanner, 1968;

Fosberg and Schroeder, 1971; Paltridge and Barber, 1988;

Pompe and Vines, 1966; Trowbridge and Feller, 1988; Viegas

et al., 1992), since the fuel water content has a clear impact on

ignition delay and fire rate of spread (Nelson, 2001). FMC is also

critical for planning of prescribed burns (Baeza et al., 2002)

which are growingly considered a critical aspect of integrated

fire management. Finally, it has also been related to burning

efficiency, which is a critical component of fire emission

models (Chuvieco et al., 2004a). In addition to fire-related

applications, the estimation of plant water content is an

essential input of vegetation productivity models (Boyer,

1995), and to improve water management in irrigated

agriculture (Sepulcre-Canto, 2006).

Direct estimation by field sampling provides the most

accurate method to obtain FMC, commonly using gravimetric

methods, namely the weight difference between fresh and dry
Please cite this article in press as: Yebra, M. et al., Estimation of live f
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samples (Lawson and Hawkes, 1989). However, this approach

is very costly and the generalization to regional or global scales

results unfeasible. The use of meteorological indices is

widespread, since they provide an easy spatial and diachronic

estimation of FMC (Camia et al., 1999), but they also present

operational difficulties since the weather stations are often

located far from forested areas and may be scarce in fire prone

regions. Furthermore, these estimations are reasonably well

suited for dead fuels, because their water content is highly

related to atmospheric conditions. However, in live fuels,

species physiological characteristics and adaptation to

drought imply a great diversity of moisture conditions with

the same meteorological inputs (Viegas et al., 2001).

FMC estimation of live fuels can also be based on remote

sensing methods, since FMC variations affect fuel reflectance

and temperature. The monitoring of grass curing from satellite

images was proposed by Burgan and collaborators Q(Burgan and

Hardy, 1993), within the potential revisions of the National Fire

Danger Rating System (NFDRS). A further elaboration of this

concept led to the use of greenness indices (defined as the

relative change in vegetation index values with respect to time

series maximum and minimum) as an estimation of dead

versus live fuels proportion to compute fire danger potential

(Burgan et al., 1998). Later, both empirical (Chen, 2005;

Chuvieco et al., 2004b; Paltridge and Barber, 1988; Roberts

et al., 2006) and simulation approaches (Jacquemoud and

Ustin, 2003; Riaño et al., 2005; Zarco-Tejada et al., 2003) were

developed to estimate FMC from remote sensing data. The

empirical methods are commonly based on statistical fitting

between field-measured FMC and reflectance data. They have

a known accuracy and are simple to compute. However, those

empirical relationships are sensor and site-dependent, and

therefore difficult to extrapolate to regional or global scale

studies due to differences in leaf and canopy characteristics

(Riaño et al., 2005) or sensor calibration and observation

conditions.

Estimation of water content from simulation approaches

has frequently been based on inversion of radiative transfer

models (RTM). Since these models are based on physical

relationships that are independent of sensor or site condi-

tions, they should be more universal than empirical fittings.

However, the selection and parameterization of RTM is far

more complex than empirical models, since they are based on

assumptions that may not accurately resemble those found in

nature, especially when complex canopies are involved (Liang,

2004). Most studies based on RTM have found that the

equivalent water thickness (EWT), defined as the amount of

water per leaf area, can be retrieved from reflectance data,

since it represents the water absorption depth of leaves

(Ceccato et al., 2002; Datt, 1999). However, the FMC is more

difficult to estimate from reflectance measurements, since it

does not only depend on water absorption, but also on the

changes in dry matter as a result of leaf drying. Sensitivity
uel moisture content from MODIS images for fire risk assessment,
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analysis based on a wide range of conditions has found

potential for FMC retrieval from reflectance measurements

(Bowyer and Danson, 2004), providing that the dry matter

content can also be estimated (Riaño et al., 2005).

The main objective of this study was to compare the

performance of empirical and RTM approaches to derive FMC

of Mediterranean species from satellite reflectance measure-

ments. The final goal was to derive an operational estimation

that could be integrated with other factors of wildland fire risk.

2. Methods

The general scheme of the method developed in this paper is

presented in Fig. 1. The empirical approach was derived from

multivariate linear regression (MLR) analysis between field-

collected FMC data and reflectance values derived from the

moderate resolution imaging spectroradiometer (MODIS). The

field samples were divided in two sets: 60% for calibrating the

model and the remaining 40% for the validation. Two different

models were built for grasslands and shrublands. The

simulation approach was derived from RTM that were

parametrized using field data, auxiliary information derived

from MODIS products and the knowledge of the type of canopy

architecture that define which RTM is appropriate (Combal

et al., 2002). Once the simulated reflectance values for

grasslands and shrublands were obtained for the whole solar

spectrum, they were convolved to the MODIS spectral

wavelengths and band widths. Finally, separate MLR models

between the simulated reflectances and the grassland and

shrubland FMC values were built, in a similar way to the
U
N

C
O

R
R

E
C

Fig. 1 – Methodolog
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empirical method. Those equations were applied to the MODIS

data for the same validation dataset as the empirical model to

compare the performances of both approaches.

2.1. Field sampling

A field campaign has been carried out by our research group

since 1996 to the present in the Cabañeros National Park

(Central Spain; Fig. 2) to collect samples of different Medi-

terranean species for field FMC estimation. Three plots of

grassland and two of shrubland (Cistus ladanifer L., Rosmarinus

officinalis L., Erica arborea L. and Phyllirea angustifolia L.) sized

30 m � 30 m, were collected in gentle slopes (<5%) and

homogeneous patches. For this paper, FMC values of C.

ladanifer L. were selected as representative for shrubland plots

since it is very common in Mediterranean siliceus areas. It

appears in a 29.79% of the study area covering a radius of

100 km from the National Park being the dominant species in

more than 6% versus less than 16% of appearance and 1% of

dominance of the other three species together in the same

area. In addition to this, it is a typical pioneer species that

regenerates easily by seeds after diverse types of handlings

and disturbances (Nuñez Olivera, 1988), so it is the primary

colonizer in areas with recurrent wildfires, which are of

special interest in this study.

The sampling protocol followed standard methods

described in Chuvieco et al. (2003a) and was repeated every

8 days during the spring and summer seasons from 1996 to

2002 and every 16 days from 2003 on. For this paper, FMC

measurements taken from 2001 to 2005 have been used to

correspond with the temporal series of the MODIS images.
ical flowchart.

el moisture content from MODIS images for fire risk assessment,
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Fig. 2 – Map of Spain showing the location of Cabañeros National Park, as well as a false color composite Landsat image

showing the midpoint of the shrubland (S1 and S2) and grassland (G1, G2 and G3) plots used in this analysis. The grey

boxes indicate the 3 T 3 MODIS grid (1.5 km T 1.5 km) centered at the plots. Shaded boxes indicate the window adapted to

the shrub shape plot.
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FMC was computed from the difference of fresh and dry

weight as following:

FMC ð%Þ ¼Wf �Wd

Wd
� 100; (1)

where Wf is fresh weight of leaves and small terminal

branches (in the case of shrub species) or the whole plant

(in the case of grassland), and Wd is dry weight, after oven

drying the samples for 48 h at 60 8C.

After 2004, FMC field sampling incorporated the collection

of variables that are critical for running the RTM at leaf level,

such as dry matter content (DM), equivalent water content

(EWT) and chlorophyll content (Ca + b).

DM and EWT were computed following:

DM ðg cm�2Þ ¼Wd

A
; (2)

and

EWT ðg cm�2Þ ¼Wf �Wd

A
(3)

where Wf and Wd are the same as in (1) and A is the leaf area.

C. ladanifer L. leaf area was measured with an image

analysis Delta system (Delta Devices LTD, Cambridge. Eng-

land). Ca + b was measured by means of destructive sampling

and measurement of leaf concentration in laboratory with the

dimethyl sulfoxide (DMSO) method and spectrophotometric

readings, according to Wellburn (1994). For grasslands, DM and
Please cite this article in press as: Yebra, M. et al., Estimation of live f
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C
TCa + b measurements were provided by a field ecologist

working in similar environments (Valladares, personal com-

munication). Spectral soil reflectance was also measured with

a GER 2600 (GER Corp., Millbrook, NY) radiometer to use as an

input at canopy level model.

2.2. MODIS data

Two standard products of the MODIS program were chosen for

this study: the MODIS/Terra surface reflectance (MOD09A1)

and the MODIS/Terra leaf area index (LAI) and fraction of

photosynthetically active radiation (FPAR) (MOD15A2). The

first is an 8-day composite product of atmospherically

corrected reflectance for the first seven spectral bands of

the MODIS sensor at a spatial resolution of 500 m (Fig. 3). This

product includes ancillary information, such as sun and

sensor angles (Vermote and Vermeulen, 1999). The standard

MOD15A2 product was selected to take into account the strong

effect of LAI variations on reflectance as well as to parametrize

the RTM. This product is generated daily at 1 km spatial

resolution and composited over an 8-day period based on the

maximum value of the FPAR for that period (Knyazikhin, 1999).

The original products were downloaded from the Land

Processes Distributed Active Archive Center (LP DAAC) of the

United States Geological Survey (USGS) (http://edcimswww.-

cr.usgs.gov/pub/imswelcome/) and reprojected from sinusoi-

dal to UTM 30 T Datum European 1950 (ED50) using nearest

neighbour interpolation resampling. MOD15A2 data were

resampled to 500 m to match the resolution of the MOD09A1

product using the same interpolation algorith. The values of a
uel moisture content from MODIS images for fire risk assessment,
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Fig. 3 – Example of reflectance spectrum (400–2500 nm) of different FMC values for C. ladanifer L. measured with GER 2600

under laboratory experimentation showing location of MOD09A1 band regions (grey bands) with their central wavelength

(between brackets).
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given plot for comparing with the field data were extracted

from each composited image using the median value of a

3 � 3 pixel kernel located at the center of the field plot. A 3 � 3

window was used in order to reduce the potential noise due to

residual atmospheric effects and georeferencing errors. In the

case of shrublands, extraction windows were adapted to the

shape of shrub patches to avoid including mixed pixels (Fig. 2).

To verify this approach the coefficient of variation (CV) was

computed for reflectances for a Landsat image (30 m � 30 m

pixel size) within the extraction windows. The CV decreased

from 0.052 and 0.255 of the 3 � 3 windows in the near infrared

band (NIR) and the short wave infrared (SWIR) bands,

respectively, to 0.050 and 0.195 with the adapted window.

The extractions of reflectance data of each pixel were derived

from the 8-day composite that had a closest selected day to the

field collections.

A wide range of vegetation indices were calculated to be

included as independent variables in the empirical MLR model
U
N

C
O

R

Table 1 – Spectral indices calculated for MODIS including their s

Index

‘‘Normalized Difference Vegetation Index’’ NDVI ¼ r2�r1
r2þr1

‘‘Soil Adjusted Vegetation Index’’ SAVI ¼ r2 �
r2 þ r

‘‘Enhanced Vegetation Index’’ EVI ¼ 2:5
r2 þ 6r

‘‘Global Environmental Monitoring Index’’
GEMII ¼ etað

eta ¼ 2ðr2
2 �
r2

‘‘Visible Atmospheric Resistant Index’’ VARIi ¼
r4

r4 þ

‘‘Normalized Difference Infrared Index’’ NDII6 ¼
r2 �
r2 þ

‘‘Normalized Difference Water Index’’ NDWI ¼ r2 �
r2 þ

‘‘Global Vegetation Moisture Index’’ GVMI ¼ ðr2 þ
ðr2 þ

Please cite this article in press as: Yebra, M. et al., Estimation of live fu
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 P(Table 1). Only one form of the NDII using band 6 (1628–

1652 nm) was calculated based on previous studies which

show stronger correlations between this band and field

measured FMC values than other MODIS bands in the SWIR

region (Roberts et al., 2006; Yebra et al., 2005).

The first five indices in Table 1 measure greenness

variations, which are only indirectly related to leaf water

content. The other indices included in Table 1 are more

directly related to water content, by combining water

absorption in the SWIR wavelengths with other bands that

are insensitive to water content (Fourty and Baret, 1997).

Although greenness indices do not include water absorption

bands, they can be used as an indirect estimation of water

content, since moisture variations affect chlorophyll activity,

leaf internal structure and LAI of many Mediterranean plants

(Bowyer and Danson, 2004). In this sense, as the plant dries,

changes in leaf internal structure cause a decrease in the

reflectance in the NIR and an increase in the visible region, as a
hortened acronym, mathematical formulation and citation

Formula Reference

(Rouse et al., 1974)

r1

1 þ L
ð1þ LÞ (Huete, 1988)

ðr2 � r1Þ
1 � 7:5r3 þ 1

(Huete et al., 2002)

1� 0:25etaÞ � r1 � 0:125
1� r1

1:5r2 þ 0:5r1Þ
þ r1 þ 0:5

(Pinty and Verstraete, 1992)

� r1

r1 � r3
(Gitelson et al., 2002)

r6

r6
(Hunt and Rock, 1989)

r5

r5
(Gao, 1996)

0:1Þ � ðr6 þ 0:02Þ
0:1Þ þ ðr6 þ 0:02Þ (Ceccato et al., 2002)

el moisture content from MODIS images for fire risk assessment,
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result of reducing photosynthetic activity and LAI values.

However, this relation cannot be generalized for all ecosys-

tems because, for example, variations on chlorophyll content

can also be caused by plant nutrient deficiency, disease,

toxicity and phonological stage (Ceccato et al., 2001).

2.3. Generation of simulated reflectances

The use of RTM in remote sensing analysis can follow two

different approaches: forward and backward simulation. The

former is based on changing input parameters and analyzing

the effects on the simulated reflectance to assess the

importance of each input parameter in the different spectral

wavelengths. The backward simulation, also named inver-

sion, estimates which set of input parameters produces a

simulated reflectance more similar to a particular observed

reflectance. The concept of ‘‘similar’’ spectrum is commonly

formalized in RTM inversion approaches using the merit

function, which implies minimizing the differences between

the observed and modeled reflectances:

x2 ¼
Xn

i¼1

ri �MðQ;XiÞ½ �2 (4)

where x is the difference between the observed reflectance (r)

and the modeled reflectance M(Q, X), for a certain set of input

parameters (Q, X), being X the value to be estimated, and n the

number of spectral wavelengths of the input image.

The inversion process can be achieved through iteratively

running the model until finding a spectrum (and its corre-

sponding set of parameters) that closely matches the

reflectance values extracted from satellite data. Alternatively,

the model can be run in advance and which of the simulated

reflectances is more similar to the observed spectrum can be

determined later. In both cases, once the most similar

simulated spectrum is found, the set of parameters that

generated that spectrum is considered a good estimation of

vegetation conditions of the area where that satellite

observation came from (Zarco-Tejada et al., 2003).

The second approach is usually designed as the generation

of a look up table (LUT) (Liang, 2004), and it is the most

commonly used since it is quicker, provides a control scenario

on the input parameters to be searched for (Combal et al., 2002)

and allows the identification of ambiguous situations where

there are several set of input parameters which can produce a

modeled result that agrees with the observations within a

tolerance (Gobron et al., 2000; Saich et al., 2003).

The LUT approach was selected for this paper. A LUT

includes the output of running the RTM for the different

simulation scenarios (M(Q, X) as stated in (4)). Therefore, the

inversion process does not need to run the model for each

pixel of the image, but rather it can focus on finding which of

the modeled spectrum is most similar to an observed pixel

reflectance, most commonly using a merit function of

‘‘spectral similarity’’ based on the quadratic distance (as

formulated in (4)). Alternatively to this search, relationships

over the modeled spectrums and a corresponded key

biophysical parameter, using neural network or genetic

algorithms (Fang and Liang, 2003) can be built. For this study,

a MLR between the simulated reflectance and their associate
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FMC in the LUT was used, in a similar way as the model

derived for empirical data.

Spectral reflectances between 400 and 2500 nm were

simulated for different FMC values by linking two well-known

RTM: the PROSPECT leaf model (Jacquemoud and Baret, 1990)

and the SAILH canopy model (Verhoef, 1984). PROSPECT

simulates reflectance and transmittance of a leaf by consider-

ing it as a set of N stacked layers with several absorption

components (Ca + b; DM and EWT). SAILH is a model that

simulates canopy reflectance from the output of the PRO-

SPECT model (leaf reflectance and transmittance) plus a set of

variables affecting the canopy. The main ones are the leaf area

index (LAI), leaf angle distribution function (LADF), the hotspot

parameter, which is a relation between leaf size and canopy

height, the soil substrate (soil reflectance) and viewing and

illumination conditions (Sun and view zenith angle, relative

azimuth sensor-sun angle and atmospheric transmissivity).

The PROSPECT–SAILH models were run to create a LUT for a

wide set of FMC values. For each simulation case, the FMC was

computed as a ratio of EWT and DM, two of the input

parameters of the PROSPECT model. Input parameters for

running these models are included in Table 2. They were

derived from our field sampling and literature review. A

random noise factor of the size of half a step of the simulation

was introduced in the simulation step to cover the variation

space of the model and therefore avoid gaps with fixed values.

Since the set of simulations might include unrealistic

combinations of input parameters, a filter criterion was

applied to eliminate those simulations which would not be

likely to occur. In Mediterranean conditions, annual grasses

escape drought by reducing their vital cycle and when grass

dries it tends to reduce leaf cover as a result of loosing turgidity

and the consequent leaf curling (Valladares, 2004). On the

other hand, shrubs frequently adapt to the summer condition

by reducing leaf area and increasing non-photosynthetic

material (Valladares, 2004), and therefore increasing DM. For

all above mentioned, either the lowest LAI or highest DM

values are unlikely to combine with the highest FMC in

Mediterranean grasslands or shrublands, respectively. There-

fore, field observations were used to derive two linear

relations, a positive one between FMC and LAI for grasslands,

and another negative between FMC and DM for shrublands

(Fig. 4) and were used for filtering out some of the simulations.

The cases that exceeded a 10% of the maximum or minimum

residual of the regression fitting were eliminated. This 10%

margin of error was arbitrary added in order to take into

account the possibility that other sites, with other species,

have different relations. It must be better determined by

measurements at other sites.

The final LUT included 1331 spectra for grasslands and 503

for shrublands. The simulated spectra were convolved to the

seven MOD09A1 reflectance bands, by means of sensor

response functions, to be used as input bands for the MLR

model. Additionally, the same vegetation indices considered

in the empirical model were computed as well (Table 1).

2.4. Data analysis

The empirical modeling was based on stepwise multivariate

linear regression analysis (MLR). Forward inclusion with 0.08
uel moisture content from MODIS images for fire risk assessment,
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Table 2 – Input parameters for the PROSPECT–SAILH simulations

Model Parameter Grassland Shrubland

Min. Mx. Step Min. Mx. Step

Prospect N 1.25 2.5 0.5 1.25 2.5 0.5

DM (g cm�2) 0.002 0.007 0.001 0.02 0.04 0.003

EWT (g cm�2) 0.0001 0.017 0.0003 0.012 0.03 0.002

Ca + b (mg cm�2) 20 20 – 45 45 –

Sailh LAI 0.5 2 0.6 0.5 3 0.6

Hotspot 0.001 0.001 – 0.008 0.008 –

ts 27 51 16 27 51 16

tv 5 5 – 5 5 –

psr �30 �30 – �30 �30 –

SAILH LADF parameter was fixed to erectophile and plagiophile for grasslands and shrublands, respectively. The soil spectrum was that one

measured in Cabañeros National Park. Sun zenith angle (ts), sensor zenith angle (tv), and relative azimuth sensor-sun (psr) in degrees.
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(in) and 0.1 (out) significance levels were selected (SPSS, 2004).

Two different models were used for FMC estimation, one for

grasslands and one for shrub species, using C. ladanifer L. as a

representative species. Average values of the three plots of

grasslands on one hand, and the two plots of C. ladanifer L. on

the other, were used for building the models. In this way, the

FMC values are more representative of the coarse pixel size of

the MODIS images. There were 66 sample periods, which were
U
N

C
O

R
R

E
C

Fig. 4 – Scattergraphs of relations between FMC and LAI (grassl

initial LUT (center) and final LUT (bottom). These models were

and DM field data were considered.
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Orandomly divided into two groups, 60% for the calibration of

the empirical models (n = 40) and 40% for the validation

(n = 26). To check the robustness of the relationships, several

60% random samples were obtained to derive the linear

models. Dry and wet years were included in each group, which

assures greater significance of the results.

Two additional linear regression models for grassland and

shrublands were built with the simulated reflectance and FMC
TE
D

ands), and DM (shrubland) for field data observations (top),

derived exclusively from field data, only periods with LAI

el moisture content from MODIS images for fire risk assessment,
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values using stepwise forward MLR selection. Model calibra-

tion for each vegetation class was based on all of the simulated

dataset so in this case the sample was much higher than for

empirical data, since there were many more simulations than

field sampling periods. To better compare results with the

empirical data, the validation of these models was performed

with the same cases used to assess the empirical models. In

this case, the independent variables for the MLR were the

MODIS simulated reflectances, the spectral indices derived

from them (extracted from the LUT) as well as the LAI values

for the grassland model and the DM values for the shrublands

model. The decision to include LAI and DM in the MLR analysis

was based on previous experience with RTM iterative

inversion software (Rueda, 2001), which only offered good

results when LAI and DM were fixed. In this sense, if the FMC

models are calibrated using LAI or DM as independent

variables they will account for variation in these two

parameters and ancillary data can be used later on to fix

those values, in the same way that they were fixed in the

iterative algorithm, and therefore the inversion is constrained.

For the validation with the same sample as the empirical

models, the LAI values were extracted from the MODIS

standard LAI product (MOD15A2), and the DM was estimated

from our seasonal field measurements. As a starting approach

a simple model based on just two average DM values for spring

(0.026 g cm�2) and summer (0.032 g cm�2) were used. Similarly

to the empirical approach, once the model was calibrated,

several 60% random samples were obtained to check the

robustness of the relationships.

The accuracy of the empirical and simulated models was

measured from the determination coefficient (r2), the slope of

the relationship between observed and predicted values and

the root mean square error (RMSE), which summarize the

difference between the observed and predicted FMC. This

RMSE was decomposed into systematic (RMSEs) and unsyste-

matic (RMSEu) portions (Willmott, 1982). The latter takes into

account errors caused by uncontrolled factors, while the

former considers errors caused by the model performance and

the predictors included. A good model is considered to have an

RMSEu much larger than the RMSEs.

3. Results

3.1. FMC evolution versus reflectance data

Temporal trends in FMC values and several MODIS bands are

shown in Fig. 5. FMC values of grasslands show a large

oscillation between the spring and summer seasons. The

former had values in the range of 250–300%, while the latter

presented FMC values below 30%, which can be considered as

dead matter. This cycle in FMC values was clearly observed too

in the MODIS reflectance data, although with maximum FMC

values corresponded with minimum reflectance values in the

band 1 (620–670 nm), 6 (1628–1652 nm) and 7 (2105–2155 nm)

wavelength, and maximum in band 2 (841–876 nm). The

spring/summer variation of FMC values in 2005 was lower

than in other years, because of the exceptional dry conditions.

However, the reflectance variation is similar to other years,

with the exception of band 2, which shows an increase in
Please cite this article in press as: Yebra, M. et al., Estimation of live f
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reflectance instead of a decrease in summer time. The

reflectance values of April 2005, practically match those

FMC values at the beginning of June for the rest of the years.

Less seasonal oscillation is observed for FMC values of

shrublands, which range between 60% and 120% most years.

The exception is again 2005 with very low FMC values. That

year, the FMC contents were below 100% in the spring season,

reaching values below 60% in summer time. FMC had similar

effects on reflectance bands 1, 6 and 7 as in the grassland case

but seasonal reflectance variations, just like FMC one, were

much smaller in amplitude. These lower variations were

reflected in the regression analyses that follow. For shrub-

lands, NIR band (2) did not show a clear correspondence to

FMC variations.

Table 3 shows Pearson r coefficients between the temporal

evolution of FMC and MODIS reflectance bands. Bands 1, 6 and

7 had significant correlations both for grasslands (p < 0.001)

and shrublands, although in this case with lower significance

level ( p < 0.005). Band 2 was significant for grassland (r = 0.54,

p < 0.001) while it was uncorrelated with shrubland FMC

(r = 0.0078). The spectral vegetation indices showed very good

correlations for grasslands (r > 0.62), and lower for shrublands

(0.32 < r < 0.81). The red/NIR indices (EVI, NDVI, SAVI) pro-

vided a sound estimation of FMC for grasslands, while those

based on the NIR/SWIR space (NDII, GVMI, NDWI) offered

better results for shrublands, although NDVI still provides

high r values for shrublands. The VARI index, which is a

combination of the blue–green–red reflectance, provided the

best correlation for C. ladanifer, but offered the lowest for

grasslands, being the only index with higher correlations for

shrubs than for grasslands.

3.2. Correlations between simulated reflectance and FMC

The highest coefficients were observed for those bands located

in the SWIR (bands 6 and 7, Table 3). Bands 1 (red) for grassland

and 2 (NIR) for shrublands had also a high r coefficient. The

latter was opposite to the empirical data, which did not show a

significant relationship for band 2. Band 5 (1230–1250 nm)

offered better correlations for the simulated than for the

observed reflectances. Similarly to the empirical approach,

shrubland correlations were generally lower than for grass-

lands. The spectral indices computed for simulated data

provided similar results as those observed for empirical data,

although the performance of red/NIR indices for grasslands

was less important than for the indices based on the NIR/

SWIR. Contrary to the empirical data, the VARI worked better

for grasslands than for shrublands.

3.3. Performance of empirical and simulation results

Table 4 shows the variables selected for the MLR empirical

models with the different random samples selected. For

models derived from empirical data, NDVI was always

selected as the most explicative variable for grasslands, and

accounted for almost 90% of input variance. The r2 determina-

tion coefficients were similar in the four runs of the model, but

the slopes and constants of the equations as well as the

standard errors of the estimation (S.E., standard deviation of

the error) changed. The selected model (identified as 0 in
uel moisture content from MODIS images for fire risk assessment,
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Fig. 5 – Temporal evolution of FMC and MODIS bands 1, 2, 6 and 7 reflectance in the study area for grasslands (top) and

shrublands (bottom).
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Table 4) had an S.E. of 30.1%. For shrublands, the r2

determination coefficients of the MLR estimations were lower

than for grasslands, with values between 0.67 and 0.73. The

S.E. of the calibrated model was 17.5%. Variables selected were

VARI and GVMI, the former accounted for most of the

explained variance. As in the case of grasslands, the

differences in models by varying randomly the input cases

were clearly observed, with notable changes in slopes,

constant and S.E.

Models derived from the simulation data show a different

behaviour from those generated from empirical data (Table 5).

The selected variables were in greater correspondence with

the spectral water absorption features. For grasslands, the LAI

and the NDII values were selected, but not the NDVI or other

red/NIR index. For the shrublands, DM PROSPECT parameter

and GVMI were selected. It was observed that choosing
Please cite this article in press as: Yebra, M. et al., Estimation of live fu
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randomly 60% cases for the calibration produced slight

changes in the models (Table 5). Total determination

coefficients were similar to the models generated from

empirical data, but standard errors were lower for both

grassland (29.5%) and shrubland (12.6%).

The validation of the empirical and simulated data models

was carried out with the remaining 40% of the field-FMC

measures. In this case, the model inputs were MODIS

reflectances in both the empirical and the simulated model,

since the simulation was only used to calibrate the model, but

the validation was performed with real data. This was also the

case for the LAI and DM values, as previously mentioned.

Similar determination coefficients were found for the

empirical and simulated data model in both grassland and

shrublands (Table 6). The RMSE of the grassland model was

higher for the empirical than for the simulated data but the
el moisture content from MODIS images for fire risk assessment,
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Table 3 – Pearson correlation coefficients between FMC
and MODIS-derived data for simulated (SIM) and ob-
served (OBS) data

Pearson Grassland Shrubland

FMCOBS FMCSIM FMCOBS FMCSIM

B3 S0.725 S0.621 �0.428 S0.431

B4 S0.680 S0.195 �0.328 S0.169

B1 S0.816 S0.710 S0.532 S0.440

B2 0.540 0.215 0.078 0.698

B5 S0.241 S0.637 �0.226 S0.197

B6 S0.768 S0.799 �0.421 S0.552

B7 S0.771 S0.793 �0.427 S0.503

NDII6 0.887 0.902 0.606 0.710

NDWI 0.859 0.915 0.482 0.751

GVMI6 0.890 0.887 0.604 0.688

EVI 0.945 0.721 0.421 0.760

GEMI 0.896 0.554 0.324 0.772

VARI 0.623 0.812 0.810 0.517

NDVI 0.952 0.792 0.678 0.590

SAVI 0.933 0.788 0.541 0.645

Samples, n 40 2270 40 503

Bold numbers refer to significant correlations at p < 0.001. Under-

lined are significant at p < 0.005.
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ratio of estimated versus observed FMC values (slope) was

quite similar and close to 1 for both generated grasslands

models. These RMSE values were computed after negative

estimations, which may occur during the driest periods of

the summer season, were removed. The RMSEu portion of

the residual error was higher than the RMSEs for both

simulated and empirical datasets. Regarding the shrublands,

the empirical data-derived model showed a closer to 1 slope

and a lower RMSE than the model derived from the

simulated. This later model has a RMSEs higher than the

RMSEu.

Fig. 6 shows the temporal trends observed and estimated

for the two different models in both grasslands and shrub-

lands. Both the empirical and simulated data model provide

better fittings for grasslands variation than for shrublands,

where tendencies to overestimation (empirical data model)

and underestimation (simulated data model) were observed,

especially during the summer period. In the driest year of our

study series (2005) grasslands FMC was poorly estimated by

the empirical model, while the model based on simulation

data was closer to measured values in the spring season (day

111). On the contrary, from the later spring (day 130) onwards,

the empirical model performed better than the simulated data

model.
U
N

Table 4 – Multiple regression results for FMC estimations base

Sample Grassland

r2 a b1 (NDVI) S.E. n

0 0.907 �161.112 650.226 30.1 40 0

1 0.870 �131.144 564.230 40.2 35 0

2 0.879 �134.729 552.872 31.4 41 0

3 0.845 �137.591 566.349 36.3 39 0
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4. Discussion

This paper has compared the performance of empirical versus

simulated reflectance data for estimating live FMC values. The

pros and cons of each approach may be summarized in

Table 7. Empirical models, which have been extensively used

in remotely sensed applications, generally provide an accurate

estimation of the target variable, but are very costly to

generate and have only local application. In the case of FMC

estimation, empirical models can be generalized by using a

wider set of input data, but it would imply an extensive field

sampling effort.

Estimations based on simulated data from RTM are a sound

alternative to empirical approaches, providing a more physical

basis to understand observed relationships. However, they are

difficult to parameterize and have assumptions that are not

always found in nature. They also present uncertainties in the

inversion mode, since very similar reflectances can be derived

from a different set of input parameters, which is the well-

known ill-posed inverse problem (Garabedian, 1964). Addi-

tionally, the physical models do not take into account

ecophysiological relations, and therefore they might provide

poor estimations when unrealistic combinations of input

parameters are considered. Finally, the noise associated with

the sensor and data processing (radiometric calibration and

atmospheric correction) and illumination effects increase the

uncertainties of the inversion process (Combal et al., 2002).

This paper has shown a simple inversion technique based

on MLR to retrieve FMC from MODIS data. This estimation has

been compared to traditional empirical models in terms of

accuracy and robustness.

The Pearson coefficient analysis between FMC values and

vegetation indices carried out before the MLR analysis showed

that all the red/NIR indices except GEMI correlated with

grasslands FMC stronger than NIR/SWIR. This might be due to

the fact that GEMI breakdowns with respect to soil noise at low

vegetation covers (Qi et al., 1994), which occurs mainly on

summer time. On the other hand, NDVI was the only red/NIR

index which correlated with shrubs FMC practically the same

as GVMI and NDII, and higher for NDWI. The former was no

expected, since others studies with finer spatial resolution

sensors such as Landsat-TM (Chuvieco et al., 2002) have

reported lower correlations for NDVI than for NIR/SWIR

indices. Therefore, our results might be due to LAI or border

effects present in the coarse spatial resolution of MODIS.

Lower than expected correlations for NDWI as computed from

MODIS/Terra band 5, should be caused by the radiometric

problems of this sensor that have been reported by several

authors (Stow et al., 2005).
625

d on empirical data (calibration set)

Shrubland

r2 a b1 (VARI) b2 (GVMI) S.E. n

.732 229.14 887.155 �300.751 17.5 40

.734 1,91,474 719.134 �216.348 13.3 42

.757 199.962 796.292 �222.873 15.9 35

.671 200.868 768.924 �234.900 18.1 41

uel moisture content from MODIS images for fire risk assessment,
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Table 5 – Multiple regression results for FMC estimations based on RTM simulated data (calibration set)

Sample Grassland Shrubland

r2 a b1 (LAI) b2 (NDII) n S.E. r2 a b1 DM b2 (GVMI) S.E. n

0 0.894 �6.74 131.41 296.751 1331 29.5 0.842 200.27 �5322.81 92.28 12.6 503

1 0.898 3.013 121.82 324.708 817 29.2 0.852 205.23 �5471.86 90.19 12.4 304

2 0.904 �7.746 132.31 287.376 792 29 0.844 203.161 �5472.86 96.46 12.7 298

3 0.897 �4.587 129.08 309.865 782 29.1 0.823 198.828 �5279.85 92.28 12.9 293

Table 6 – Results of the validation of the models (validation set)

Empirical data Simulated data

r2 Slope RMSE (%) RMSEs (%) RMSEu (%) r2 Slope RMSE (%) RMSEs (%) RMSEu (%)

Grassland 0.9140 0.93 28.39 10.24 25.39 0.9268 0.92 24.57 8.69 22.99

Shrubland 0.7226 0.91 16.01 3.23 15.68 0.7034 0.56 25.18 19.17 10.10

a g r i c u l t u r a l a n d f o r e s t m e t e o r o l o g y x x x ( 2 0 0 8 ) x x x – x x x 11
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According to the previous analysis, regression models

based on empirical data selected different variables to those

based on simulated data. The former fittings tended to select

indices based on the red/NIR space, such as NDVI or VARI,

while the latter chose indices in the NIR/SWIR space, such as

the NDII or GVMI for grasslands or shrublands, respectively.

The reason for that should be related to the indirect effects of

water content variations on plant physiological activity. VARI

or NDVI do not include bands with water absorption features,

but they were selected in the empirical models because they

are very sensitive to chlorophyll and LAI variations, which

follow leaf drying in many species, and particularly in

grasslands (Nelson, 2001). These indirect effects are not so

evident for shrublands (Nuñez Olivera, 1988), and therefore

the empirical models selected also indices including SWIR
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Fig. 6 – Temporal trends of FMC observed and estimated by

both empirical and simulation models for grasslands (top)

and shrublands (bottom).
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Rbands, such as the GVMI. This index was also selected by the

simulation model, since it is well adapted to water

absorption features. In fact, it was initially designed as a

water content index (Ceccato et al., 2002), although it was

intended for estimation of EWT (water per leaf area), and not

for FMC (water per dry mass). However, with empirical data,

the most explicative index was the VARI, which is a

combination of blue, green and red reflectance, as it is

proposed to estimate chlorophyll content of the upper

canopy. The importance of VARI for FMC was also observed

by other authors working in Mediterranean shrubs (Roberts

et al., 2006; Stow et al., 2005).

NDII and GVMI, NIR/SWIR indexes, are selected in models

based on simulation data. Red/NIR indices were not chosen

because the indirect effects of water content on chlorophyll

variations were not considered in the simulations, since the

chlorophyll content was fixed. Chlorophyll content decrease

with water deficit in C. ladanifer L., following an annual cycle

with higher values in winter, lower in summer and inter-

mediate in spring and autumn (Nuñez-Olivera et al., 1996;

Gratani and Varone, 2004). The reason behind selecting a fixed

chlorophyll value in the simulation was, that spring chlor-

ophyll content can be attenuated under severe drought

periods what can lead to slighter differences between spring

and summer values (Valladares, personal communication).

Years 2004 and 2005 were specially dry in our study site

(Garcia, 2007), therefore average chlorophyll values for spring

and summer were not significantly different (ANOVA,

p > 0.05). Late spring is the period of maximum leaf shedding

in C. ladanifer L., and hence mature leaves sampled during

those days showed the relatively low chlorophyll content

typical of senescent leaves (Nuñez-Olivera et al., 1996).

Regarding grasslands, Billore and Mall (1976) found a clear

bell-shape curve in chlorophyll content, with the peak just

after the rain season, so more variations in chlorophyll

content are likely to be found between spring and summer.

Future work should be done to consider these variations in the

grassland simulations and see if the models derived changes

the tendency to choose indices including SWIR bands towards

Red/NIR.

LAI variations were included in the grassland model, which

is indirectly related to variations of red/NIR reflectance.
el moisture content from MODIS images for fire risk assessment,
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Table 7 – Summary of advantages and disadvantages of empirical and simulated data in FMC estimation

Simulated data Empirical data

Calibration difficulty High (requires detailed parameterization) Low

Time to generate the model High Medium

Cost Medium (reduces field sampling, but increases

input variables that should be measured to

parametrize the model)

High (intense field sampling)

Indices selected NIR–SWIR space Red–NIR space

Auxiliary data High (Sun-Illumination Angles, LAI, DM, etc.) Low (reflectance)

Robustness High Medium

Accuracy Largely depend on range of input conditions

and model assumptions

Largely depends on time series and

spatial representativity of the sample

a g r i c u l t u r a l a n d f o r e s t m e t e o r o l o g y x x x ( 2 0 0 8 ) x x x – x x x12
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LAI and DM as external variables were introduced in the

simulation data model based on the rules used to avoid

unrealistic combinations and previous experience with RTM

inversion software (Rueda, 2001), which only offered good

results when LAI and DM were fixed. In this way the final

simulated derived models account for variation in these two

parameters.

Both modeling approaches provided good estimations of

grasslands and shrublands FMC, but those based on simulated

data offered a lower standard error. Negative estimations of

the grassland models were not considered a serious problem,

since they occurred with actual FMC values below 30%, where

these fuels can be considered as dead fuels (Nelson, 2001). In

integrated systems of fire risk indices, the dead FMC

estimation is carried out by means of meteorological indices,

therefore, a filter could avoid these negative estimations to

address this error. Therefore, the model based on simulated

data should be considerable more suitable because it has a

tendency to under-estimate FMC whereas the empirical model

over-estimate FMC in the driest periods. From the fire

prevention point of view, over-estimation is considered less

desirable since it would tend to reduce the fire risk rating,

although false alarms are also undesirable.

Some problems with the model derived from simulated

data, especially those related to shrublands estimation, might

be improved with the use of a wider range of parameters, or

other inversion strategies, that will be considered in the near

future. Additionally, new RTM better adapted to forested

areas, such as geometrical or mixed geometrical-turbid

medium models, such as GORT, DART, GEOSAIL (Pinty et al.,

2004), may provide better inversion in shrublands as well as

extending our efforts to tree-covered areas. The generalizing

power of these simulation models remains to be proven, by

extending the validation sample to other study areas, which

we will also plan to perform in the near future.

5. Conclusions

Developing an operational methodology of FMC estimation is a

key factor for fire risk assessment. Remote sensing offers

operational tools to monitor this FMC evolution. The first

results that compare the effectiveness of FMC estimations

from empirical methods and those based on simulated data

for two representative vegetation types (Mediterranean grass-

land and shrublands) were covered in this paper. The model

based on empirical data offered reasonable results and it was
Please cite this article in press as: Yebra, M. et al., Estimation of live f
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Oeasy to compute. The model based on simulation data, was

more complex to generate, but proved more robust when

several calibration samples were selected.

Further studies should test whether these models are

applicable in other sites with similar environmental char-

acteristics.
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Nuñez Olivera, E., 1988. Ecologı́a del jaral de Cistus ladanifer,
Universidad de Extremadura.
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