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Abstract 
Fuel moisture content (FMC) is a critical variable for fire danger estimation since it affects 
fire ignition and fire propagation. Current methods for FMC estimation rely on meteorological 
data, which are good predictors of dead fuels, but they do not provide a reliable estimation of 
live fuels. Additionally, the integration of dead and live fuels is not commonly pursued. 
This paper presents the results of a Spanish research project, that has tested the operational 
estimation of FMC from satellite data and meteorological danger codes for fire ignition 
probability mapping. Live FMC (LFMC) has been derived from NOAA-AVHRR and Terra-
MODIS satellite data. Different models for grasslands and shrublands have been derived, 
using empirical and simulation approaches. FMC of dead fuels (DFMC) has been estimated 
from the 10h moisture code. In order to integrate dead and live FMC, both values have been 
converted to ignition probability using the moisture of extinction (ME). ME for dead fuels 
was taken from Behave fire simulation system, assigned values of 12% (model 1), 15% 
(model 2) and 25% (model 9), while for live fuels average values of 40% and 105% were used 
for grassland and shrublands respectively. Both indices have been mapped at 1 sq km spatial 
resolution, and will be integrated with other fire danger variables, within a comprehensive 
index of fire risk. 
 
Introduction 
Fuel moisture content (FMC) of both live (LFMC) and dead (DFMC), is one of the 
most important variables in fire ignition and fire behaviour modelling, and therefore 
is considered in most fire danger rating systems worldwide. Fuel water content is 
inversely related to the probability of ignition, due to the fact that part of the energy 
necessary to start a fire is used up in the process of evaporation right before the fire 
starts (Dimitrakopoulos and Papaioannou 2001). On the other hand, water content 
also affects fire propagation since the source of the flames is reduced with humid 
materials, therefore reducing flammability (Viegas 1998). 

The estimation of FMC has been based on several methods, including field sampling, 
meteorological indices and remote sensing techniques. Field sampling is the most 
direct method, but it is also the most costly and his applicability to regional or global 
scales result unfeasible. Most operational fire danger rating systems base their 
estimation of FMC on meteorological data, routinely collected by national or regional 
weather services. Meteorological indices measure FMC indirectly, through the 
analysis of atmospheric characteristics from which vegetation water status is 
estimated, so their FMC estimations are reasonably well suited for dead fuels due to 
the fact that their water content is highly related to atmospheric conditions. However, 
live fuels have different physiological characteristics and adaptation to drought what 
make that a great diversity of moisture conditions can be found with the same 
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meteorological inputs (Viegas and others, 2001). Therefore meteorological indices 
are not appropriate for LFMC estimation. Remote sensing data (reflectance or surface 
temperature) are directly derived from vegetation conditions so they constitute a 
better alternative to estimate LFMC but not for DFMC. Dead materials, in one hand 
are under the vegetation canopy and consequently they are not directly remotely 
sensed and in the other hand, they are less sensitive to changes in radiance (Chuvieco, 
Aguado and others 2004). 

For all above mentioned, an operational estimation of fire occurrence, giving a 
particular FMC should be derived from the jointly used of both meteorological 
danger codes and remote sensed techniques (empirical or those based on simulated 
data) 

However, FMC is not the only variable to consider in a wildfire risk system. There 
are also others variables affecting the probability of occurrence, such as socio-
economic factors. This creates severe difficulties for finding a common scale for 
combining all the fire danger variables in a synthetic index, especially when these 
variables are included as components of a geographical information system (GIS). 
GIS tools provide a comprehensive spatial view of fire danger conditions for local or 
regional planners since they facilitate the creation, transformation and combined 
analysis of geo-referenced variables. Consequently, GIS may portray the 
geographical location of those areas where danger factors are most severe and thus, 
fire protection programs may be spatially and temporally oriented to the areas 
labelled as having high fire danger rating levels. However, few fire danger systems 
are operationally using GIS technologies (Lee, Alexander and others 2002). This is 
mainly caused by the difficulties of generating the spatial distribution of some key 
variables, such as lightning activity or human factors (Chuvieco, Allgöwer and others 
2003) and the difficult to integrate those different factors in the same “danger scale”.  

The use of GIS webmapping technologies and Remote sensing in a semi-operational 
application of fire danger assessment is the objective of the Firemap project, funded 
by the Spanish Ministry of Science and Technology, which tries to create an 
operational system to provide information on fire danger conditions to the fire 
managers in a daily basis. The danger index used for this project (Fig. 1) was based 
on a proposal made within the European Spread project (Chuvieco, Allgöwer and 
others 2003). Following its terminology, the term fire risk includes the probability 
that a fire occurs (danger) and the potential damage (vulnerability) of that fire on 
vegetation, soils, landscape, or properties. This latter aspect is not covered in this 
paper.  

With regard to the danger component, the Spread project proposed to consider factors 
related to the probability of starting a fire (named ignition danger) and the potential 
likeliness that this fire propagates in space and time (termed propagation danger). 
The ignition danger is related to the causal agents of fire, as well as the conditions of 
the fuel, both dead and live, while the propagation danger refers to the predictable 
behaviour of the fire, caused by wind, slope and fuel load.  

This paper addresses the role of FMC in fire ignition, and therefore the concept of 
fire danger is restricted here to the likelihood of fire occurrence, giving a particular 
fuel moisture content. This likelihood will be defined in terms of ignition potential 
associated to fuel moisture content status (identified as  IPf). These values would be 
ready to be integrated with other variables associated with ignition sources (lightning, 
human), which could also be expressed in terms of ignition potential (IPl and IPh, for 
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ignition potential of lightning and human causes, respectively). In this way, the final 
value of ignition danger would be expressed in a common scale as a product of 
several ignition probabilities that would be included in a GIS-based fire danger rating 
system.  
 
Figure 1: Framework of the Firemap project. 

 
 
We start by proposing the methods used for LFMC and DFMC estimation and then 
the method to convert FMC to ignition potential. Finally, in spite of the fact that the 
Firemap fire danger assessment system was started in May of 2006 in four different 
regions of Spain (Aragón, Huelva, Madrid y Valencia), here we have selected a study 
case focused in the region of Madrid (Spain) for the 12th of August 2006. 

 
Methodology: 
Field sampling 
A standard field campaign has been carried out in Cabañeros National Park (central 
Spain) from spring (April) to the end of the summer (September) in order to have 
LFMC and DFMC measurements and the critical biophysical parameters for 
generating the simulated dataset. LFMC samples of grasslands and several shrubland 
Mediterranean species (Cistus ladanifer, Erica australis, Phillyrea angustifolia and 
Rosmarinus officinalis) were collected from 1996 to 2005 each 8 or 16 days. The 
biophysical measures were performed in 2004 and 2005 for grassland and Cistus 
ladanifer, the later chosen as representative of the Mediterranean shubland species. 
DFMC samples consist on litter and cured grass collected from 1998 to 2003.  

An extra field validation campaign was carried out in 2001 and 2002 in order to test 
whether LFMC models are applicable in other sites with similar environmental. This 
extra sites are in the autonomous region of Madrid (CAM), Castilla y León and 
Andalucía. In this case, LFMC was measured each 16 days. A detailed description of 
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the field work may be found in Chuvieco  and others (2003) and (Yebra, Chuvieco 
and others).  

Live fuel moisture content estimation 
Empirical and simulation approaches for LFMC estimation as well as remotely 
sensed reflectance data at different spatial and spectral resolution were explored in 
order to determine which one offers the more accurate estimations.  

Empirical methods were based on multivariate linear regression (MLR) analysis 
between field measured LFMC data (Cistus ladanifer and herbaceous species) and 
remoted sensed data derived from Terra-MODIS (Moderate Resolution Imaging 
Spectroradiometer) (Yebra, Chuvieco and others 2006) and NOAA-AVHRR 
(Advanced Very High Resolution Radiometer) 

The MOD09A1 standard product of the Terra-MODIS program was chosen as source 
of MODIS atmospherically corrected reflectance. It is an 8-day composite for the 
first seven spectral bands of the MODIS sensor at a spatial resolution of 500 m 
(Vermote and Vermeulen 1999). The original products were downloaded from the 
Land Processes Distributed Active Archive Center (LP DAAC) of the United States 
Geological Survey (USGS) (http://edcimswww.cr.usgs.gov/pub/imswelcome/), 
reprojected from sinusoidal to UTM projection and resampled to a common 
resolution of 1 km using nearest neighbour method.  

Daily 1 km NOAA-AVHRR images were acquired by the HRPT receiving station 
installed at the Department of Geography of the University of Alcala. Raw data were 
converted to reflectance using NOAA´s coefficients and degradation rates, and 
Surface Temperature (Ts) was derived using the methods proposed by Coll and 
Caselles (1997). Geometric correction was performed using orbital models, and 
multitemporal coregistration was assured using GCPs. Subsequently, daily images 
were composited using MVC-Brightness Temperature criterion. 

The values of a given plot for comparing with the field data were extracted from each 
composite image (MODIS or AVHRR) using the median value of a 3x3 pixel kernel 
located at the center of the field plot. A 3x3 window was used in order to reduce the 
potential noise due to residual atmospheric effects and geo-referencing errors.  

The inclusion of a temporal variable in the MLR analysis was also studied, as 
suggested by Chuvieco and others., 2004b, (Chuvieco, Cocero and others). This 
temporal variable, based on the day of the year (from 1 to 365), was considered to 
take into account seasonal trends in FMC. Two different functions, for each of the 
vegetation covers considered, were computed by empirically fitting a periodical 
function to the temporal average of FMC sampled values of grassland and Cistus 
ladanifer for dry years (1999 and 2005, eq. 1 and 2) and normal or wet years (the rest 
of the temporal series, eq. 3 and 4). Classification of dry/wet years was based on 
meteorological data available for Cabañeros site from 1998 to 2003 and 2005. 

Dry years: 

 (1) 55.0))/365))(5.1(sin( 63/1 ×+××= DJDJFDp π  

 (2) 5.0*)65.0/365))55.1(sin( 2 +××= DJFDm π  

Normal years:  

  (3) 5.1))/365))(5.1(sin( 62/1 ×+××= DJDJFDp π  
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 (4) 5.0 1)/365))6.1(sin( 2 ×+××= DJFDm π  

The simulation approach was tackled through the inversion of two well-known 
Radiative Transfer Models (RTM), Prospect (Jacquemoud 1990) at leaf level and 
Sailh (Verhoef 1984; Kuusk 1985) at canopy level. The inversion technique used was 
to built empirical relationships over RTM simulations and vegetation index derived 
from MOD09A1 simulated reflectance bands, as is explained in Yebra (2006). The 
range of variation of leaf biophysical parameters needed to run the models forward 
were taken from field measurements, while the viewing geometry and canopy 
structure were derived from MOD09A1 and MOD15A2 respectively and 
bibliography review. MOD15A2 is the MODIS leaf area index (LAI) product. It is 
generated daily at 1-km spatial resolution and composited over an 8-day period based 
on the maximum value of the photosynthetic radiation product for that period 
(Knyazikhin, Glassy and others 1999). MOD15 was acquired from the same URL 
site. 

All the equations calibrated were validated using a MODIS or AVHRR validation 
dataset corresponding to the same study area where the models were calibrated 
(Cabañeros) but at a different dates. Those models which best performanced were 
validated in the extra study sites to test if they were equally good. In order to check 
the accuracy of the models the Root Mean Square Error (RMSE), which summarizes 
the difference between the observed and predicted FMC was computed. This RMSE 
was discomposed in systematic (RMSEs) which takes into account errors caused by 
uncontrolled factors and unsystematic (RMSEu) which considers errors caused by the 
model performance and the predictors included. A good model is considered to have 
an RMSEu much larger than the RMSEs.  

 

Dead fuel moisture estimation 
The efficiency of two well-known moisture codes to estimate DFMC in 
Mediterranean areas was tested in a previous work, adopting a two-step process 
(Aguado   and others, in review). Firstly, an empirical model to estimate DFMC from 
meteorological data was developed by selecting the best adapted index to the 
Mediterranean areas. Secondly, the selected index was computed for a whole study 
region from weather forecasted data, using spatial interpolation techniques.  

To test which meteorological danger index provided a better estimation of DFMC in 
Mediterranean conditions, a calibration phase was undertaken based on the field 
sampling carried out in Cabañeros National Park. Since our model was intended to 
estimate FMC of cured grasses and litter, it should be based on those meteorological 
indices associated to the finest dead fuels. Two moisture codes with this attribute 
were selected from the Canadian and the US fire danger indices: the Fine Fuel 
Moisture Code (FFMC) (Van Wagner 1987) and the 10-hour code, respectively 
(Bradshaw, Deeming and others 1983).  

The selection of the most efficient index to estimate FMC of senescent grasses and 
litter was based on multitemporal correlation between the field data and the 
meteorological moisture codes. Yearly correlations were computed for each fuel type.  

Linear regression analysis was conducted to obtain an empirical model for the 
estimation of FMC. Two separate models were created for grasses and litter, plus 
another one mixing the two fuel types. For all the regression models a random sample 
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of 70% of the study periods were selected to calibrate the model, and the remaining 
30% were used for validation. 

The performance of each index was measured by the Pearson r value and the root 
mean standard error (RMSE). 

Considering the current difficulties to obtain and process data coming from numerous 
weather stations, it was decided to apply the spatial interpolation to forecasted 
variables, instead of to actual measured variables. Estimated fields of 14:00 GMT 
meteorological input variables for the Madrid region were obtained applying a two-
step method. This method downscales and interpolates the surface temperature and 
relative humidity forecasts provided by European Centre for Medium Range Weather 
Forecasting (ECMWF) numerical weather prediction model (NWPM). Due to 
computational limitations, the horizontal grid resolution (0.5ºx 0.5º in the ECMWF 
model) is not high enough to depict important topographical features. For this reason, 
in topographically complex regions -like Madrid- it became necessary to downscale 
NWPM output of surface variables. A statistical downscaling method, based upon 
empirical relationships between ECMWF forecasts and observations in 35 weather 
stations in the Madrid region were applied. Once the original 0.5ºx 0.5º ECMWF 
forecasts were transformed into forecasts for 35 specific sites in the region, it was 
necessary to perform the spatial interpolation itself. The final output fields had a 
regular grid of 500x500 m resolution. The interpolation algorithm took into account 
horizontal distances between the grid point and the surrounding stations (quadratic 
inverse distance algorithm). The effect of altitude of each grid point over the value of 
the variable (temperature or humidity) was also considered by means of the 
variable/altitude gradient detected in the former prediction for the 35 sites since 
obviously they have different altitudes. 

  
Conversion of FMC values to Fire Ignition Danger 
Once the estimation of FMC was accomplished, the final step was to convert both 
LFMC and DFMC to a common scale of fire danger in order to be able to integrate 
them with other factors of fire risk. This common scale was defined in terms of 
probability of fire occurrence, either related to human factors or physical factors. In 
this sense, all those danger variables will be transformed into a common scale of 
danger, ranging from 0 (null probability) to 1 (maximum probability). The 
probability of fire occurrence associated to FMC was based on the concept of 
moisture of extinction (ME) that was successful tested in a previous project 
(Chuvieco, Aguado and others 2004). ME is defined as the threshold moisture 
content above which a fire cannot be sustained (Rothermel 1972). In spite of some 
criticism, this concept is widely used in forest fire literature (Burgan, Klaver and 
others 1998). ME of dead fuels varies between 12-40% depending of fuel types. For 
the types of dead fuels used in this study, ME values were taken from the BEHAVE 
fire behaviour prediction system (Burgan and Rothermel 1984). Grasslands with 
FMC values lower than 30% were considered as dead fuels and assigned ME values 
of 12% (model 1) and 15% (model 2). Likewise, the ME value for litter was 25% 
(model 9). For live fuels, ME threshold values were taken from specialized literature. 
For shrubs, an average value of 105% was selected, for annual grasslands the ME 
threshold was fixed at 40% (Chuvieco, Aguado and others 2004). 

We assumed that ME values act as relative thresholds to ignition for each fuel, above 
which the ignition potential dramatically decreases. Although, the ignition probability 
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(IP) for FMC values higher than ME should be zero, a conservative approach was 
followed, assuming that a marginal IP existed even at high values of FMC. For this 
reason, Chuvieco (2004) proposed to assign a maximum IP of 0.2 to the FMC that 
equals the ME value of each fuel. FMC values lower than ME would have IP values 
in the range of 0.2 to 1, the IP being linearly inversely proportional to FMC values. 
For FMC values greater than the ME, IP values would range from 0.2 to 0. Null 
ignition potential (IP = 0) was assigned to the maximum FMC value recorded in the 
historical series of FMC field measurements (1996-2005). Schematically this method 
is based on the following algorithm: 

If FMC > ME then 

2.0)))()((1( max ×−÷−−= MEFMCMEFMCIP  Else 

8.0)))()(2.0( min ×−÷−+= FMCMEFMCMEIP  

where FMCmax and FMCmin are the maximum and minimum FMC values of each fuel 
type derived from field FMC samplings. Although these values are site specific, they 
can reasonably be applied to relatively large regions that have similar environmental 
conditions. After applying this algorithm, Ignition Probability values associated to 
FMC in live fuels (IPlive ) and dead (IPdead) were obtained . 

In order to integrate IPlive and IPdead in the  IPf concept we have account the fuel load 
associated to each BEHAVE fuel model. The estimated IPf was obtained using the 
next equation:  

)%100(%( adlivefuelloIPadlivefuelloIPIP deadlivef −×+×=  

Where %livefuelload stands for the proportion of live fuel load within each grid 
related to land use cover extracted from the Corine Landcover 2000. 

 
Results 
Live fuel moisture content estimation 
The calibrated models for LFMC estimation are showed in table 1. With regard to 
grassland models, there are little differences between their determination coefficients 
(R2 ) and standard errors (SE). All the independent variables had significance values 
lower than 0.01. However, MODIS derived models have slightly higher R2 and lower 
SE. Similar adjustments are also found for shrublands models and all the independent 
variables are significant at 99% but GVMI of model 2 which is significative at 90 %. 
The model 1 performs somewhat poorer as it has the lowest R2 and highest SE. 

The validation results (table 2) show that every grassland models have R2 about 0.9 
and FMC estimated-observed relations close to 1:1 slope. RMSE values are also quite 
similar having the model with highest value (model 2) an RMSE 6 % higher than the 
model with the lowest one (model 3). The model 3 derived from MODIS and RTM, 
has a slightly lower tendency to overestimate. However, it is less operative, as it 
includes information from two different MODIS products (MOD09 and MOD15), so 
as their estimations do not extremely improve the accuracy, in balance it is no worth 
use it. In conclusion, model 1 is considered the most appropriated. 
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Table 1. Gras (G) and Shrub (S) calibrated models. R2 is the determination coefficient, SE, 
Standard error, NDVI “Normalized Difference Vegetation Index”(Rouse, Haas and others 
1974), NDII “Normalized difference infrared index” (Hunt and Rock 1989), VARI “Visible 
Atmospheric Resistant Index” (Gitelson, Kaufmam and others 2002), GVMI “Global 
Vegetation Moisture Index” (Ceccato, Gobron and others 2002). FDx is the function of the 
Day of the year (as stated in equations 1 to 4), Ts is the surface temperature, DM the “Dry 
matter content” and  LAI “Leaf area index”.  

 
Table 2. Validation of the models Cabañeros National Park site. RMSE stand for Root Mean 
Square. RMSEs and RMSEu, systematic and unsystematic portions respectively 

 
With regard to shrubland models, their determinant coefficients are lower than for 
grassland. Model 3 has the lowest R2 and highest RMSE, being its systematic portion 
higher than the unsystematic one. This all indicates that this model should be 
discarded. Model 4, derived from AVHRR, has the second best adjustment but it 
shows a higher tendency to overestimations as it is confirmed by the constant of the 
validation fitting. It is concluded that model 1 is again the most appropriate as its 
relation between observed and estimated is the closest to 1:1 slope.  

The assessment of these equations on the other study sites shows no such a good 
results as it was expected (table 3). Grassland model 1 has a RMSE of 42.6 % and a 
high tendency to overestimate. On the other hand, shrubland model 1 has a R2 equal 
to 0.63. Due to the fact that models 2 were not much worse than the models 1, their 
performance was tested in this validation sample. The result is that grassland and 
shubland models 2 perform better than models 1 in these sites because their 
determinant coefficients are higher and the tendency to overestimate is lower 
(grassland model). Because of this, models derived from MODIS data which include 
the Julian day function (model 2) are chosen for both, grassland and shrubland. 

 SENSOR METHOD MODEL R2 SE  
(pct) 

Empirical 1. NDVIFMCG ×+−= 2.6501.161  0.91 30.1 

Empirical 2. GG FDNDVIFMC ×+×+−= 55.5251.50312.129  0.93 26.3 

MODIS 

RTM 3. NDIILAIFMCG ×+×+−= 7.2964.1317.6  0.89 29.5 

G 

AVHRR Empirical  4. sG TNDVIFMC ×−×+×+= 194,186.331FDp115,5127,95  0.85 36.9 

Empirical 1. GVMIVARIFMCS ×−×+= 7.3002.8871.229  0.73 17.5 

Empirical 2. SS FDGVMIVARIFMC ×××−×+= 44.8867.16357.42738.104  0.78 15.2 

MODIS 

RTM 3. GVMIPEFMCS ×+×−= 3.928.53223.200  0.82 12.9 

S 

AVHRR Empirical 4. sS TNDVIFMC ×−×+×+= 2294,079,40FD87,12573,8 S  0.81 13.3 

VEGETATION MODEL R2 Slope Const. RMSE 
(pct) 

RMSEs 
(pct) 

RMSEu 
(pct) BEST 

1 0.91 0.93 12.69 27.38 10.24 25.40 2 
2 0.87 0.93 14.70 33.41 11.90 31.22 4 
3 0.93 0.92 0.17 24.57 8.69 23 1 

GRASS 

4 0.91 0.89 10.46 27.43 13.50 23.88 3 
1 0.73 0.922 9.75 16.03 3.43 15.66 1 
2 0.68 0.768 28.67 17.79 9.96 14.74 2 
3 0.56 0.513 23.03 23.04 19.30 12.57 4 

SHRUB 

4 0.76 0.819 22.40 14.30 7.44 12.21 3 

GGrass FDNDVIFMC ×+×+−= 55.5251.50312.129
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Table 3. Validation of the Grassland (G) and Shubland (S) models in other sites. RMSE stand 
for Root Mean Square. RMSEs and RMSEu, systematic and unsystematic portions, 
respectively. 

 
 

Dead fuel moisture estimation 
A comparative analysis of the relationship between the adjustment of observed and 
estimated FMC from the FFMC and that from the 10-h code did not show significant 
differences, according to the data shown. Consequently, the 10-h code was selected 
for the remaining phases of this study, as it requires fewer meteorological variables 
for its calculation (temperature and relative humidity). In order to make operational 
the FMC estimation we have assessed the possibility of using a joint equation for 
both fuel models (cured grass and litter). The resulting coefficients from this analysis 
are: 

1608.20317.110 +×= hFMC  

The results of the data used to validate the model (30% of the sample) did not differ 
from the rest of the sample. 

Fig. 2 shows the fit between observed and predicted FMC values for the validation 
data using the 10h code. The adjustment is stronger in the cured grass because of no 
outstanding deviations in the estimations. In terms of the litter fuels, there was a 
deviation between observed and estimated values of the FMC in some rainy periods. 
The remaining time periods show a generalized tendency toward overestimation of 
the water content value of this type of fuel. 
Figure 2: Observed and predicted dead FMC values for the validation data. (�) Cured grass, 
(•) Litter 
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  MODEL R2 Slope Const. RMSE 
(pct) 

RMSEs 
(pct) 

RMSEu 
(pct) BEST 

1 0.88 0.78 36.39 42.6 27.56 32.48 2 G 
2 0.90 0.85 18.17 36.08 16.5 32.09 1 
1 0.63 0.90 -8.26 27.98 18.10 21.34 2 S 
2 0.85 0.90 -0.40 10.47 11.71 15.71 1 
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Estimated values of 14:00 GMT temperature and relative humidity (at 2m height 
from the surface), for the Madrid region, were obtained applying the two-step method 
previously described. This method is currently operative to supply high-quality, high-
resolution forecasts of forest-fire related meteorological variables in many regions in 
Spain and were provided by Meteológica S.A.  
 
Conversion of FMC to Igniton Probability 
To obtain the moisture of extinction and fuel load available of each grid of the 
Madrid region, a fuel type map was provided by the Regional Environmental Office. 
For the types of dead fuels used in this study moisture of extinction were derived 
from those proposed in the BEHAVE fuel models (Burgan and Rothermel 1984).  
Fig. 3 shows an example of IPlive , IPdead and the IPf computed the 12th of August 
2006.  
 Figure 3: Example of IPlive (a) , IPdead (b) and the IPf (c) computed for the 12th of August in 
Madrid. 

 
With regard to IPlive , lower values (mainly between 0-0.4) are found from the north 
to the south-west border of the region, coinciding with the mountain areas; “Sierra 
Norte”, “Cuenca alta del Manzanares”, “Cuenca del Guadarrama” and “Sierra 
Oeste”. In these areas the values of LFMC are high and close to the maximum LFMC 
values recorded in the historical series of LFMC field measurements (340% and 
210% for grass and shrubland, respectively) and to the ME value (105%). The reason 
of this is that the vegetation dominated at higher altitudes by shrubland is not affected 
by water shortage (the rainfall is above 800 mm). However, some elevated IPlive 
values (0.6 - 0.8) are also found coinciding with mid-elevation grassland which, 
although remain green longer than the grassland in the southern part, they also reach 
moisture levels lower than 40% (grassland ME) at the middle of the summer periods. 
This is mainly due to the high temperatures and lower precipitations that are reached 
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in this season. Some empty pixels are found in woodland areas since this kind of 
cover was not dealt in this paper. 

Values range 0.6-1 are found in the central and south-east part of the autonomous 
community where the mountains disappear giving rise to the Tajo Valley plain. This 
valley is on sands, loams and clays and it is dominated by moors and large areas of 
cultivated land. The central area is where a higher quantity of no data is found since it 
coincides with the metropolitan area.  

Finally, middle IPlive values dotted with high values and no data pixels are found in 
the south-east fertile plain part of the region of Madrid. This is mainly dominated by 
crops and gallery communities and therefore the high quantity of no data is also 
explained. 

Regarding to dead fuels less variability in their IP values are found. There are no 
values lower than 0.4 in any part of the study region. This is due to the high 
temperatures and low relative humidity that combined produce the lowest DFMC 
values. A slightly tendency over higher values from north-west to south-east is found 
due to the altitudinal gradient. 

Having a look to the final map resulting from the combination of both IP live and IP 
dead, a higher heterogeneity in the IPf values is found, although middle values (0.4-0.6) 
dominate the region. 

 
Conclusions 
This paper has tried to show a simple procedure to integrate FMC information into 
fire danger assessment systems, focusing on its integration into ignition danger 
rating. Since fire ignition is a result of several variables associated to causal agents 
and fuel water status, a common scale of danger is required to integrate those 
variables into a synthetic danger index. We propose to transform the original scale of 
each danger variable into an ignition potential (IP), defined as the likelihood of a 
starting fire, in the range of 0 to 1. This likelihood can be related to the action of 
causal agents, such as lightning or human activities, as well as to the water status of 
fuels. Methods to convert all these variables to IP are required. This paper has 
presented a method to obtain the IP associated to fuel moisture content. 

Within this framework, we proposed to compute the ignition potential associated to 
fuel water state (IPf), based on the concept of moisture of extinction (ME), which 
expresses a physical threshold for flammability. The function to convert FMC into IP 
is a linear one, since for Mediterranean species it has been found a continuous 
increase in flammability as FMC reduces.  

Since FMC can be mapped either by gridded meteorological data or satellite images, 
IPf can also be mapped, and therefore the assessment of ignition danger can be 
spatially performed. Moreover, this information can be easily integrated with other 
sources of danger (lightning or socio-economic causes), in the framework of 
Geographic Information Systems developed for this purpose. The spatio-temporal 
comprehensive view of such products should be very helpful to fire managers, who 
can make decisions within the spatio-temporal context. Additionally, this information 
may be overlaid with maps showing the available dispatch resources or the potential 
effects of fire on human and natural resource, thus improving the selection of the  
most appropriate fire prevention activities. 
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