Novel algorithms based on active-passive data synergies to retrieve forest variables

Ignacio Borlaf Mena

Institutul National de Cercetare-Dezvoltare în Silvicultură Marin Drăcea

Thursday 18th January, 2018

The EO-ROFORMON project

The EO-ROFORMON project aims to prototype a novel national forest monitoring and forecasting system based on earth observation data

Forest type

Available inputs

Possible classification techniques

Possible workflow for classification

Fractional canopy cover

Approaches

Validation

Forest health

Biomass

Forest type classification: available inputs

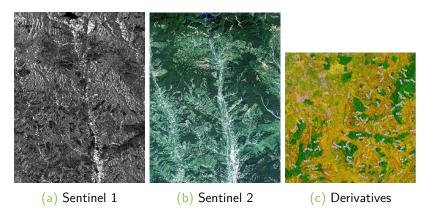


Figure: Available imputs for forest type classification (images a and b downloaded from ESA, image c obtained from Gamma remote sensing)

Forest type classification: possible classification techniques

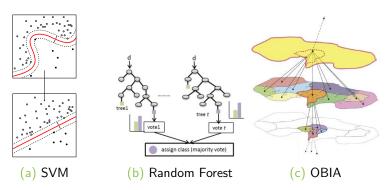
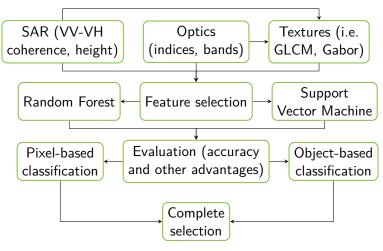



Figure: Available techniques for forest type classification (images from Wikipedia, Belgiu 2016 and Blaschke et al., 2014)

Possible workflow for classification

Approaches for calculating fractional canopy cover

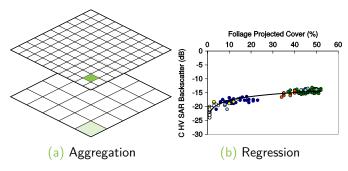


Figure: Comparison of the two approaches envisaged for fractional canopy cover extraction (modified from Texample and from Lucas, 2006)

Validation of fractional canopy cover

Figure: The ALOS forest/non-forest mask will be used for validation (Image obtained from Jaxa)

Scheme for detection of changes in forest health

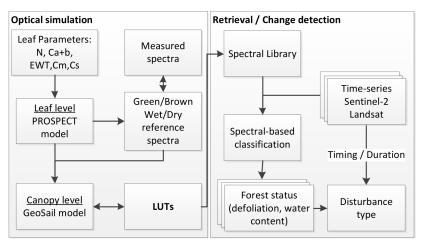
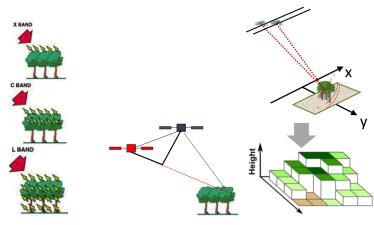



Figure: Envisaged scheme for forest health changes detection (modified by Tanase from the original in de Santis, 2009)

Biomass retrieval

- (a) Backscatter based (b) InSAR based
- (c) Based on PolInSAR

Figure: Available methods for biomass calculations with SAR (images from ESA, Tanase, 2015 and CNES)