Monitoring seasonal changes in Plant Traits: Exploring the relationship between vegetation water status and water fluxes for a tree-grass environment

18.01.2018

Simposio de alumnos TIG Universidad de Alcala (UAH) Vicente Burchard Levine

CSIC

INTRODUCTION

- **Vegetative systems**, both cultivated and natural, represent a significant source and flux of water
- Crucial link between carbon, water and energy cycles with important ecological and agricultural implications → Drought monitoring, effects of water stress
- Canopy Water Content (**CWC**, g/cm2) \rightarrow Mass of water in canopy per ground area (**Water status**)
- Evapotranspiration (**ET**, mm/d) \rightarrow Soil evaporation + transpiration (**Water flux**)

1 | INTRODUCTION

STUDY SITE – Majadas de Tietar, Extremadura

- Mediteranan Tree-Grass (*dehesa*) ecosystem
- Continental Mediterranean climate
 - Mean annual Temp: 16.7 C
 - Mean annual P: 650mm
- 20% tree cover (mainly Holm oak Quercus ilex)
- Long history of environmental monitoring
 - FLUXNET tower (2003-)
 - Many ground sampling campaigns
- Time period: 2010-2017
 - 10 flight campaigns
 - 8 INTA (AHS-CASI), 1 drone, and1 Quantalab manned aircraft

OBJECTIVES

Overall goal: Estimating, monitoring and comparing seasonal changes in CWC and ET using multi-source and multi-scale spectral information in Majadas between 2010-2017

Phase 1: ET Modeling

- Modeling ET using two source energy balance (TSEB) scheme and compare against a one source energy balance scheme (SEBAL)
- Thermal Sharpening of airborne images (AHS to CASI) to be used as a reference for sharpening sentinel-3 to sentinel-2 scale
- Separation/un-mixing of canopy, grass and soil components for adapted modeling scheme (Three source model)
 - Fine resolution airborne data as a reference for separating components at medium spatial scale

Phase 2: CWC Modeling

Radiative transfer models and spectral indices

Phase 3: Investigate relationship between ET and CWC for the estimation of water fluxes

METHODOLOGY – TSEB Scheme

Developed by Normal et al. (1995)

System, soll, canopy budgets
$R_n = H + \lambda E + G$
$R_{n,s} = H_s + \lambda E_s + G$
$R_{n,c} = H_c + \lambda E_c$
Two-source approximation
$T_{RAD}(\theta)^4 {}^{\sim}f_{C}(\theta)T_{C}{}^4 + \left[\texttt{1-f}_{C}(\theta)\right]T_{S}{}^4$
Temperature constraint
H _c , H _s , R _{n,c} , R _{n,s} , G
PT , PM or LUE R _c model

., , , , , ,

 $\frac{\lambda E_{c}}{\lambda E_{s} = R_{n} - H - G - \lambda E_{c}}$

- Two layer model that computes turbulent fluxes as function of:
 - Directional surface temperature with VZA
 LAI, Fc
 - Canopy architecture (height and leaf size)
 - Irradiance, Ta, Wind Speed and humidity
- Calculates ET (latent heat) as a residual of energy balance

 Decouples energy fluxes for **plant** canopy and soil components

 $\lambda ET = R_n - H - G$

Accommodates for sensor viewing angle

Iterative solution

METHODOLOGY – Thermal Sharpening

Data Mining Sharpener (DMS): Machine learning algorithm for disaggregation of low-resolution images using high-resolution images (Based on Gao et al. (2012))

EXETER

vito

JÜLICH

2 | METHODOLOGY

METHODOLOGY – Thermal Sharpening

PRELIMINARY RESULTS

Test run using flux tower time series data (Main, North and South tower)

North Tower 2015

Н • LE

200

TSEB (W/m2)

300

400

500

600

100

South Tower 2015

H = 62.0 H = -21.0

H = 0.89

• LE

• H

RMSD: LE = 48.0 bias: LE = 3.0 r: LE = 0.93

600

500

400

300

 (W/m^2)

EC 200

500

400

300

200

100

-100 -

-100

 (W/m^2)

Ē

r:

......

-100 -

PRELIMINARY RESULTS

Running with AHS images

NEXT STEPS

Point scale time series from flux towers

 Sensitivity analysis/calibration of input biophysical parameters (i.e LAI, Canopy height, wind attenuation profiles)

High resolution AHS-CASI Data

- Downscaling AHS LST images to CASI resolution and compare with non-sharpened results
- Running TSEB for Grass (Two-Source) and Oak (One-Source) seperately
 - Validate with flux tower data (Rn, LE, H and G)
 - Obtain high resolution flux maps to be used as a reference

Medium resolution sentinel-2 (3) and Landsat

- Investigate methods to separate mixed pixels to obtain both Oak and grass/soil temperatures at sentinel-2 pixel level (based on AHS-CASI maps)
- Thermal Sharpening from sentinel-3 to sentinel-2

4 | NEXT STEPS

GRACIAS!

Vicente Burchard Levine 18/01/2018

vburchardlevine@gmail.com

