Aplicación del LiDAR full-waveform en la modelización de propiedades de combustibilidad de la cubierta arbórea y el sotobosque

Luis Ángel Ruiz, Pablo Crespo, Jesús Torralba

Grupo de Cartografía GeoAmbiental y Teledetección

www.cgat.webs.upv.es

Contents

- Introduction
- Objectives
- Data
 - ALS
 - TLS
 - Field
- LiDAR full-waveform processing
 - Voxelization
 - Extraction of metrics
- Processing software tool
- Results
 - Overall fuel variables
 - Understory vegetation
- Conclusions

Introduction

• Fuel properties have been sucessfully modeled in different ecosystems using discrete airborne LiDAR systems (ALS), but has some limitations to characterize understory vegetation due to canopy and pulse densities, footprint size, etc.

Trade-off between spatial resolution and vertical penetration

INTRODUCTION OBJECTIVES DATA METHODS RESULTS CONCLUSIONS

Introduction

• Height, cover, and structure of **understory vegetation** are key drivers of fire behavior through **surface fuel** and **ladders fuel**, which are main responsible of **rate of spread** (*Keane*, 2014) and **crown fires** (*Molina et al.*, 2011), respectively

Introduction

• Full-waveform ALS data register more detailed information in different vertical strata compared to discrete ALS

The laser pulse interacts with vegetation and terrain, a return wave is generated, which is formed by differences in: (1) elevation; (2) % of pulse intercepted at each level of vegetation/soil; (3) reflected energy from the different contacted surfaces.

Objectives

- Evaluation of full-waveform LiDAR data to estimate canopy fuel variables in Mediterranean forest
- Explore the capacity of FW-ALS data to characterize understory vegetation (volume, cover, mean and maximum height)
- Assessment of specific metrics in prediction models of understory vegetation properties
- Present a new software tool to calibrate and process FW LiDAR data

Data (ALS)

	Espadán	
Date	16/09/2015	
Sensor	LM6800	
Pulse frequency	300 kHz	
Average flight altitude	600-820 m	
Waveform storage	80-160-240 bins	
Temporal sample spacing	1 ns	
Point density	≥ 11 m ⁻² 1550 nm 3.5 ns	
Wavelength		
Pulse Length		
Pulse Width (TSS)	0.15 m	
Beam Divergence	≤ 0.5 mrad	
Scan Angle	± 18º	
Footprint	0.24 m	
Intensity detection	16 bit/return	

INTRODUCTION

Sierra de Espadán (3742 ha)

- Heterogeneous montaneous area with high slopes
- *P. halepensis, P. pinaster, Q. suber, Q. coccifera, E. arborea, Erica sp.,...*

LiDAR pre-processing

LiDAR full-waveform pre-processing

CONCLUSIONS

Data (TLS)

Sierra de Espadán (3742 ha)

Specification	Value		
Sensor	FARO FOCUS 3D 120		
Accuracy	± 2 mm at 25 m		
Range	0.6–120 m		
Pulse frequency	97 Hz		
Scan angle	Horizontal: 300°		
	Vertical: 360°		
Wavelength	905 nm		
Beam divergence	0.19 mrad		

- 21 circular plots 15 m radius
- 9 scans/plot

RESULTS

Workshop "LiDAR e Incendios Forestales" – Alcalá de Henares, 19 de octubre, 2018

OBJECTIVES

DATA

METHODS

INTRODUCTION

Field data

Sept. 2015, standard forest inventory measurements (DBH, height and N. trees, species description, etc.) Dominant species: *P. halepensis, P. pinaster, Q. suber, Q. coccifera, E. arborea, Erica sp.,...*

INTRODUCTION OBJECTIVES DATA METHODS RESULTS CONCLUSIONS

Full-waveform processing

In small-footprint systems, due to off-nadir scanning angles and various trajectories traveled by the pulses in overlapping strips the extracted full-waveform LiDAR pulse does not register truly vertical information

From Wong et al., 2013

To avoid this, the construction of a **pseudovertical full-waveform** consists on the integration of the non-vertical waveforms registered from different flight trajectories, partitioning the vertical aboveground space into regular voxels (Hermosilla et al., 2014a)

INTRODUCTION C

OBJECTIVES DATA

METHODS

Full-waveform voxelization

LiDAR profiles: discrete vs full-waveform

Understory vegetation

Full-waveform metrics (general)

METHODS

DATA

Feature	Description		
HOME	height of median energy		
NP	number of peaks		
WD	waveform distance		
ROUGH	roughness of outermost canopy		
HTMR	height to median ratio		
VDR	vertical distribution ratio		
RWE	return waveform energy		
FS	front slope angle		

INTRODUCTION

Pirotti F, 2011

CONCLUSIONS

RESULTS

Workshop "LiDAR e Incendios Forestales" – Alcalá de Henares, 19 de octubre, 2018

OBJECTIVES

Full-waveform metrics (general)

Feature	Description		
HOME	height of median energy		
NP	number of peaks		
WD	waveform distance		
ROUGH	roughness of outermost canopy		
HTMR	height to median ratio		
VDR	vertical distribution ratio		
RWE	return waveform energy		
FS	front slope angle		
	Duong (2010)		

a)

Full-waveform metrics (understory)

- a) HFEV: Height at first empty voxel
- b) HFEVT: Height at first empty voxel from threshold
- c) FVU: Filled voxels at understory

b)

d) NFVU: Filled voxels at understory divided by N. voxels

29 metrics. More detailed info in:

Crespo-Peremarch, P., Tompalski, P., Coops, N., Ruiz, L.A., 2018. Characterizing understory vegetation in Mediterranean forests using full-waveform airborne laser scanning data. **Remote Sensing of** *Environment*, 217, 400-413.

LiDAR full-waveform processing software tool

nputs	Radiometric Calibration Parameters Metrics	Execution	
		Log	_
Starting	g radiometric calibration		
	Options		
	🗹 Clip Data	Output	
	Index		
	Radiometric Calibration	Metrics (.csv)	
Voxelization		Raster (.tif)	
Reading	DTM		
		44	%
Overall F	Progress		
		Run	

- Import, indexing, radiometric calibration and clipping
- Parameter optimization, voxelization
- Extraction of metrics, processing and analysis

FW vertical profile

Processing flowchart

CONCLUSIONS

Results

(overall fuel variables)

Results of prediction models for canopy fuel variables (DENS: tree density; CH: canopy height; CBH: canopy base height; CFL: canopy fuel load)

	Adj. R ²	RMSE	nRMSE	CV
DENS	0,342	304,11 árb.ha⁻¹	12%	39%
СН	0,905	1,15 m	6%	9%
СВН	0,906	0,88 m	7%	15%
CFL	0,774	3,81 Mg.ha-1	10%	19%

METHODS

- Linear regression models ٠
- Max. 3 independent variables (AIC) ٠

DATA

OBJECTIVES

Results

(understory vegetation)

Results of prediction models for understory vegetation (MH: mean height; MaxH: maximum height; COVER: cover; VOL: volume)

	Adj. R2	RMSE	nRMSE	CV
МН	0,949	0,08 m	7%	11%
MaxH	0,758	0,52 m	12%	15%
COVER	0,871	0,09	11%	12%
VOL	0,951	56,49 m ³	7%	9%

INTRODUCTION OBJECTIVES DATA METHODS RESULTS CONCLUSIONS

Results

Comparative values of understory variables between **predicted** (ALS) and **reference** (TLS) on three example plots with low (28), moderate (31) and high (7) degrees of understory cover

INTRODUCTION

Conclusions

- Full-waveform can be used to estimate canopy fuel variables in
 Mediterranean forests
- **Understory** cover, height and volume can be accurately predicted using **full-waveform** ALS
- The most selected attributes in the prediction of understory variables were those specifically designed for this purpose (based on filled and empty voxels)
- The new software tool presented fills a gap for radiometric calibration, voxelization and metrics extraction of LiDAR fullwaveform files

Special Issue

Applications of Full Waveform Lidar

Special Issue Editor:

Prof. Luis A. Ruiz

Universitat Politècnica de València

The purpose of this *Special Issue* is to bring the state-of-the-art in LiDAR FW applications with different system types, in the development of new processing methods, algorithms and tools, and in the integration of LiDAR with other sensors and data sets to optimize its performance. Review papers and research contributions are both welcomed.

Submission Deadline: 30 April 2019

Keywords

- Forest ecology and structure assessment
- Wildfire prevention and fuel estimates
- Urban classification
- Topographic applications
- Agricultural applications
- LiDAR full-waveform methods and software

Academic Open Access Publishing since 1996

MDPI AG St. Alban-Anlage 66 CH-4052 Basel Switzerland Tel: +41 61 683 77 34 Fax: +41 61 302 89 18