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Need to reduce field work and 
site and sensor depencency   

Introduction 
¿Why? 

Wildfires have become a 
mayor natural hazard 

Fuel types drive fire ignition 
and propagation 

LiDAR provides information on 
vegetation structure  



Objective 
create a “library of LiDAR waveforms” useful to 

classify using spectral mapping methods different 
fuel types as described by Scott and Burgan (2005) 

Methodology 

Three methodological steps: 
1. Simulation in Discrete Anisotropic Radiative 

Transfer (DART) model  
2. Selection of endmembers in Visualization and 

Image Processing for Environmental Research 
(VIPER) tools  

3. Classification using spectral matching 
algorithms: multiple endmember spectral 
mixture analysis (MESMA) and spectral angle 
mapping (SAM) 



1. Simulation in DART model 

Selection of the fuel models to simulate: 

The fuel classification established by Scott and Burgan (2005) differentiate several fuel models 
classified in seven fuel types in relation to the main fire-carrying fuel: 

• NB: Non burnable (90-99) 
• GR: Grass (100-119) 
• GS: Grass-Shrub (120-139). Shrub coverage lower than 50% 
• SH: Shrub (140-159) Shrub coverage higher than 50% 
• TU: Timber-understory (160-179) 
• TL: Timber litter (180-199) 
• SB: Slash blowdown (200-220) 

Main criteria to differentiate fuel types: 

• in GR, GS, SH and TU first division in models common in arid areas and those in humid and sub-
humid. Second division fine fuel load and fuelbed depth 

• in TL a first division in broadleaf  and conifer litter, second liter load and compactness 
• in SB a first division considering the origin in fuel activity or blowdown 



1. Simulation in DART model 

Selection of the fuel models to simulate: 

Model
Fuel load/ 
dead 1hr

Fuel load/ 
live herb

Fuel load/ 
live woody

Fuel load/ 
Total Description

GR2 0.1 1 0 1.1
The primary carrier of fire in GR2 is grass, though small amounts of fine dead fuel may be present. Load is 
greater than GR1, and fuelbed may be more continuous. Shrubs, if present, do not affect fire behavior.

GR7 1 5.4 0 6.4
The primary carrier of fire in GR7 is continuous dry-climate grass. Load and depth are greater than GR4. Grass is 
about 3 feet tall.

GS2 0.5 0.6 1 2.1
The primary carrier of fire in GS2 is grass and shrubs combined. Shrubs are 1 to 3 feet high, grass load is 
moderate. Spread rate is high; flame length moderate. Moisture of extinction is low.

SH2 1.35 0 3.85 5.2
The primary carrier of fire in SH2 is woody shrubs and shrub litter. Moderate fuel load (higher than SH1), depth 
about 1 foot, no grass fuel present. Spread rate is low; flame length low.

SH7 3.5 0 3.4 6.9
The primary carrier of fire in SH7 is woody shrubs and shrub litter. Very heavy shrub load, depth 4 to 6 feet. 
Spread rate lower than SH7, but flame length similar. Spread rate is high; flame length very high.

TU1 0.2 0.2 0.9 1.3
The primary carrier of fire in TU1 is low load of grass and/or shrub with litter. Spread rate is low; flame length 
low.

TU5 4 0 3 7
The primary carrier of fire in TU5 is heavy forest litter with a shrub or small tree understory. Spread rate is 
moderate; flame length moderate.

TL3 0.5 0 0 0.5
The primary carrier of fire in TL3 is moderate load conifer litter, light load of coarse fuels. Spread rate is very low; 
flame length low.

SB1 1.5 0 0 1.5
The primary carrier of fire in SB1 is light dead and down activity fuel. Fine fuel load is 10 to 20 t/ac, weighted 
toward fuels 1 to 3 inches diameter class, depth is less than 1 foot. Spread rate is moderate; flame length low.

SB2 4.5 0 0 4.5

The primary carrier of fire in SB2 is moderate dead and down activity fuel or light blowdown. Fine fuel load is 7 
to 12 t/ac, evenly distributed across 0 to 0.25, 0.25 to 1, and 1 to 3 inch diameter classes, depth is about 1 
foot. Blowdown is scattered, with many trees still standing. Spread rate is moderate; flame length moderate.



1. Simulation in DART model 

Parameters of LIDAR sensor (main decisions): 
-    Single pulse 
- LVIS 
- Zenith angle/azimuth (footprint) 
- Height below/above 

Energy each pulse (mJ) 5 

Number of DART simulated photons (SP) 1,000,000 

Fraction of photons at LiDAR radius 0.368 

Lidar acquisition rate (ns) 2 

Maximum order of scattering 200 

Maximum RAM (Mo) 1000 

Central wavelength (µm) 1.064 

Area of LiDAR sensor (m2) 0.0314 

Height above/below minimum altitude (m) 60/10 

Zenith angle (°) 0-20 

Azimuth angle (°) 90-225 

footprint and FOV center cell X/Y  20/20 

ALS/altitude (km) 10 

Footprint diameter (m) 20 

FOV diameter (m) 38 



1. Simulation in DART model 

Parameters used in the “maket” module to simulate every fuel model: 

In DART every simulation consists in an earth scene representing a fuel model (maket) 

An Earth scene is an array of 3-D 
cells (Δx, Δy, Δz) where any scene 
element is created with a dual 
approach as a set of cells that 
contain turbid media or a set of 
geometric primitives (triangles) 
called “facets”. 

 Schneider et al. 2014: voxel grid based reconstruction yields better results 



1. Simulation in DART model 

Parameters used in the “maket” module to simulate every fuel model: 

Turbid vegetation medium are defined by: 

• their orientation, i.e. Leaf Angle Distribution (LAD) 

• volume density or Leaf Area Index (LAI) 

• optical properties: transmittance and reflectance 



1. Simulation in DART model 

Parameters used in the “maket” module to simulate every fuel model: 
Optical properties and LAD: 
• DART model includes two databases with optical properties, Lambertian and 

Vegetation 
• no information in any of the DART databases concerning shubs; values extracted from 

spectral signatures captured in fieldwork in 2014, within the framework of the HyspIRI 
Planning Mission (NASA Grant # NNX12AP87G) 

Component Optical properties Database LAD 

grass as soil grass-rye Lambertian N/A 

soil clay_brown; loam_sandy_brown; sand_white Lambertian N/A 

bark bark_coniferous Lambertian N/A 

litter as soil litter1; litter2 Lambertian N/A 

needle needle conifer Vegetation Spherical 

twig spruce twig_spruce Vegetation Spherical 

grass as vegetation grass_rye; grass_dry Vegetation Spherical 

shrub 
reflectance1tranmitance1/ multiplicativefactor 
0.4 /0.4/0.4; 0.3/0.3/0.4 Vegetation Plagiophile 

litter as vegetation 
reflectande1tranmitance1/ multiplicativefactor 
0.45/ 0.45 /0.2; 0.35/0.35/0.3 Vegetation Plagiophile 



LAI value: Used to simulate the fine fuel load  
• Casas et al. (2014) measured LAI and Leaf Mass per Area (LMA) in grass, shrub and 

forest in Coast Range of California, USA 
• The values of fine fuel load (ton/ac) in each fuel model were converted to the units of 

LMA (g/cm2) and then to LAI applying a lineal function obtained for the minimum and 
maximum values of LAI and LMA 
 
 
 
 

 

1. Simulation in DART model 

Parameters used in the “maket” module to simulate every fuel model: 

  
Grasses 
(min-max) 

Shrubs 
(min-max) 

Forest (min-
max) 

LMA (g/cm2) 0.006–0.03 0.005–0.04 0.01–0.02 

LAI (m2/m2) 0.1–2 0.1–2.5 1–2.5 
 

Model LAI/ dead 1hr LAI/ live herb LAI/ live woody 

GR2 0.030 1.581 0.000 

GR7 1.494 10.189 0.000 

GS2 0.610 0.799 1.452 

SH2 2.114 0.000 6.281 

SH7 5.917 0.000 5.518 

TU1 0.079 0.016 1.282 

TU5 6.802 0.000 4.840 

TL3 0.610 0.000 0.000 

SB1 2.379 0.000 0.000 

SB2 7.687 0.000 0.000 
 



1. Simulation in DART model 

Parameters used in the “maket” module to simulate every fuel model: 

Fuel model 

Scene plot Scene tree 

Mean height 
(m) 

Std deviation 
height (m) LAI LAI Number 

Inter tree 
distance 

(m) 

GR2 0.2/0.3 0.1 1.5/1.7 NA NA NA 

GR7 0.8/0.9/1 0.1 6/7/8 NA NA NA 

GS2 0.6/0.8 0.1 1.5/1.7 NA NA NA 

SH2 0.2/0.3 0.1 5/6 NA NA NA 

SH7 0.1 0.05 5.5/5.9 5/5.5 300/400 0.2 

TU1 0.2/0.3 0.1 1/1.2 2 30/50 1 

TU5  0.1 0.05 6/6.5 
4.5/4.8 200/400 0.2 

2 30/50 1 

TL3 NA NA NA 2/2.5 30/50/70 1 

SB1 0.1 0.05 2/2.5 2/2.5 15/25 2 

SB2 0.3 0.1 6.5/7.5 2/2.5 20 2 

 



1. Simulation in DART model 

Parameters used in the “maket” module to simulate every fuel model: 

Fuel 
model/layer 

Trunk Crown 

Diameter 
below crown 

(m) 

Height 
below 

crown (m) 

Diameter 
within 

crown (m) 

Height 
within 

crown (m) 

Mean 
height 

(m) 

First 
axis 
(m) 

Second 
axis (m) 

SH7/ shrub 0.05 0.3 0.04 1.5/1.8 1.6/2 1.2 1.2/2 

TU1/ tree 0.4/0.5 5/10 0.3/0.4 7/14 10/20 3/4 2/3 

TU5/ shrub 0.05/0.1 0.3 0.04/0.08 1.9/3.9 2/4 1.2/2 1.2/2 

TU5/tree 0.4/0.5 5/10 0.3/0.4 7/14 10/20 3/4 2/3 

TL3 0.3/0.4/0.5 5/10/20 0.2/0.3/0.4 4/7/14 5/10/20 2/3/4 1.5/2/3 

SB1 0.4 5 0.3 7 10 3 2 

SB2 0.4 5 0.3 7 10 3 2 

 



2. Selection reference spectre 

Transformation of fullwaveforme to “spectra”: 

two assumptions were maid:  
1) each bins stored in the waveform is similar to a spectral band and  
2) the number of photos in similar to the reflectivity 



2. Selection reference spectre 

Transformation of fullwaveforme to “spectra”: 



2. Selection reference spectre 

Transformation of “spectra” to simulate the Vegetation Vertical Profile: 



2. Selection reference spectre 

Three techniques to select the most appropriate endmembers: 
 
 1) Count based Endmember Selection (CoB): endmembers are selected that model the 
greatest number of endmembers within their class (Roberts et al., 2003).  
 
2) Endmember Average RMSE (root mean squared error) (EAR): endmembers are 
selected that produce the lowest RMSE within a class (Dennison & Roberts, 2003);  
 
3) Minimum Average Spectral Angle (MASA): endmembers are selected that have the 
lowest average spectral angle (Dennison et al., 2004) 

In addition the VVP analysis determined the selection of a second endmember covering 
the different scan angle and a third one in the models simulated with different tree 
heights.   



3. Classification using SMA 

Two classification methods: 
 
 1) Spectral Angle Mapper (SAM; Kruse et al., 1993) with 0.1 radians angle constraint 
 
 2) Multiple Endmember Spectral Mixture Analysis (MESMA; Roberts et al., 1998). A 
standard 2.5 % VVP error and -50 and 150 % minimum and maximum fraction partially 
constrain this endmember  
 
Two approaches: 
 
 1) Classification with only one endmember per fuel model (11 endmembers). 
Validation with the rest of simulations (90 simulations) using the percentage of 
agreement and kappa index 
 
 2) Classification with two or three endmembers per fuel model (27 endmembers). 
Validation with the rest of simulations (75 simulations) using the percentage of 
agreement and kappa index 
  
 



Results 1. Analysis of VVP  
2. Classification performance 



1. Analysis of VVP 
• LiDAR waveforms show higher differences for the two simulations in each fuel model performed at 

off-nadir observation (models in gray in Fig) 
• the optical property assigned to the soil in NB9 (bare soil, see Fig. a), implies the highest change in 

the number of photons 
• the soil influence decreases as the vegetation cover increases. For example, the “sand_white” soil 

in a GR7 simulation (model K in Fig. c) presented a similar amount of stored photons as the ones 
with the “clay_brown” (models A and B in Fig. c) 
 



1. Analysis of VVP 
• the shrub height and LAI do not produce high variation between SH2 models 
• the number of trees and LAI causes differences for SH7 (Fig. b). For example, SH7 A and E simulated 

400 and 300 shrubs, respectively, and diverse height values assigned to trunk and crown 
• the differences due the understory layer are small for TU1 (A and B in Fig. c) compared to the ones 

due to the number and height of trees (E in Fig. c) 
• TU5 has a similar behavior than TU1 (Fig. d), although the understory presents slight variations 

after modifying the number of trees representing the shrubs 
 



2. Classification 

SAM  1 endmember: 
 
 Overall accuracy = 48.9 %; Kappa index = 0.46 
 
MESMA  1 endmember: 
 
 Overall accuracy = 63.3 % ; Kappa index = 0.59 
 
 SAM  2-3 endmembers: 
 
 Overall accuracy = 85.3 %; Kappa index = 0.84 
 
 
 
MESMA  2-3  endmembers: 
 
 Overall accuracy = 86.5 %; Kappa index=0.85 
 
 



2. Classification 

Reference fuel type 

Classified GR2 GR7 GS2 NB9 SB1 SB2 SH2 SH7 TL3 TU1 TU5 NC Total 
User´s 

accuracy 
(%) 

Error of 
commission 

(%) 
GR2 6 1 0 0 0 0 0 0 0 0 0 0 7 85.7 14.3 
GR7 0 6 1 0 0 0 0 0 0 0 0 0 7 85.7 14.3 
GS2 1 0 7 0 0 0 0 0 0 0 0 0 8 87.5 12.5 

NB9 
0 0 0 4 0 0 0 0 0 0 0 0 4 100.0 0.0 

SB1 
0 0 0 0 5 0 0 0 0 0 0 0 5 100.0 0.0 

SB2 0 0 0 0 0 4 0 0 0 0 1 0 5 80.0 20.0 

SH2 
0 1 0 0 0 0 8 1 0 0 0 0 10 80.0 20.0 

SH7 
0 0 0 0 0 0 0 6 0 0 0 0 6 100.0 0.0 

TL3 
0 0 0 0 0 0 0 0 3 0 0 0 3 100.0 0.0 

TU1 0 0 0 0 0 0 0 0 3 6 0 0 9 66.7 33.3 

TU5 
0 0 0 0 0 0 0 0 1 0 9 0 10 90.0 10.0 

Not 
classified 

(NC) 
0 0 0 0 0 0 0 0 0 0 0 0 0 - - 

Total 
7 8 8 4 5 4 8 7 7 6 10 7 74 88.7 11.3 

Producer´s 
accuracy 

(%) 

85.7 75.0 87.5 100.0 100.0 100.0 100.0 85.7 42.9 100.0 90.0 - 
87.9 

Overall accuracy=86.5% 
Kappa index=0.85 Error of 

Omission 
(%) 

14.3 25.0 12.5 0.0 0.0 0.0 0.0 14.3 57.1 0.0 10.0 - 
12.1 



Conclusions 

1. SMA automatically identified fuel types from LiDAR 
waveforms simulated with DART model. 

2. MESMA outperformed SAM when using one 
endmember and gave similar results  when using 
multiple endmembers. 

3. Multiple endmembers that characterize the full 
signature variation within each fuel type improved 
the classification results. 

4. It is important to consider different scan angles in 
the simulations and account for the variability in 
height and number of trees. 



Future 
investigation 

1. Development of LiDAR signature library for the 
complete Scott and Burgan (2005) classification 
with multiple endmembers that cover the entire 
range of variability within the fuel models and 
considering different scan angles and tree heights 
and number 

2. Combine hyperspectral and LiDAR data to create 
complementary signatures libraries 

3. Comparison of the LiDAR library generated by DART 
with real LiDAR data 



Thanks for  
your attention 
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