

LiDAR aplicado a los incendios forestales

III Taller del Grupo de Incendios Forestales de la AET

Instituto Nacional de Investigación

Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria

Eva Marino José Luis Tomé Fernando Montes Javier Madrigal

Spatial modelling of crown fuels: Comparing methods based on LiDAR data

-> Introduction

Background

- → Wildfire risk prevention: fuel management
- Crown fires: high severity on forest ecosystems
- Strategic fuel treatment planning based on simulations
 - wildfire behavior potential
 - high vulnerability areas
 - spatial information on fuels needed

Background

- Collaboration between INIA and AGRESTA
- Research focused on forest structure characterization
 - GEPRIF forest fuels
 - SCALYFOR forest dynamics
- Different types of sensors (imagery, ALS, TLS, ForeStereo)

GEPRIF Project

"Fire Severity Reduction through New Tools and Technologies for Integrated Forest Fire Protection Management"

"Forest management facing the change in forest ecosystems dynamics: a multiscale approach"

NIVERSIDAD

ORDOBA

Airborne LiDAR

- Very useful to characterize 3D forest structure
- Revolution on data gathering at large scale
- PNOA free data available in Spain
- Increasingly used in forest monitoring
- Previous studies providing different methods for fuel characterization

Which are the **best methods** to get information on the spatial distribution of **crown fuels**?

Study objectives

- Assessment of different methods for crown fuel modelling
- Focused on 3 critical variables related to crown fire behaviour
 - Crown Base Height CBH
 - Crown Fuel Load CFL
 - Crown Bulk Density CBD

-> Methodology

Study area

- Valsaín in Sierra de Guadarrama National Park (Segovia, central Spain)
- Mountain forest area (wide altitude range, steep slopes)
- 7448 ha dominated by natural Pinus sylvestris stands
- Sustainable forest management since 1889
- → Different types of forest structure (tall mature stands, dense young stands, excellent regeneration)

Field inventory

- \rightarrow 30 circular plots (r = 14 m)
 - Diameters (DBH) of all trees > 7.5 cm
 - Random sampling of 10 trees/plot
 - Tree height
 - Crown base height (CBH)
- \rightarrow GPS location of plot center
 - submetric accuracy in postprocessing

Crown fuel variables at plot level

\rightarrow Crown fuel load (CFL, kg/m²)

 Allometric equations for *Pinus sylvestris* from Sierra de Guadarrama (Montero et al. 2005)

Dry biomass (kg) = CF $e^{\alpha} D^{b}$ CF = $e^{(SEE^{2}/2)}$ D = diameter

• Fine fuels:

CFL Foliar biomass (only leaves)

\rightarrow Crown bulk density (CBD, kg/m³)

Calculated from crown fuel load (CFL) and crown lenght (H_{mean}-CBH)

LiDAR data

Pulse density 1.5 – 5 p/m²

LiDAR metrics

Returns above 0.5 m

- \rightarrow Percentiles (P05, P10, ..., P99)
- Elevation statistics (h_min, h_max, h_mean, h_CV, etc.)
- \rightarrow Canopy Relief Ratio (CRR)
- \rightarrow Percentage of first (PFR) and all returns (PAR)
- Proportion of returns normalized by height strata (PRN)

Additional threshold levels for CRR, PFR and PAR

 \rightarrow 2 m and 4 m

Statistical analysis

Performance of different methods for crown fuel modelling

\rightarrow Parametric regression

- Linear, potential & exponential models
- \rightarrow Non-parametric regression
 - Random Forest
- \rightarrow Geoestatistics
 - Universal Kriging

Parametric regression

\rightarrow Model fitting

- Stepwise (forward& backward)
- Additional combination of metrics

\rightarrow Model selection

- LiDAR metrics: p-values of β coefficients
- Overall model significance: p-value
- adjusted R² and RMSE (crossvalidation)

Parametric regression

Crown Base Height (CBH)

- → Best model: **linear**
- → Inputs: LiDAR metrics changing with different formulation

Model type	LiDAR metrics	R ² (adjusted)	RMSE	p-value
Linear	P10 P50 CRR q4	0.89	1.42	< 0.0001
Potential	h_CV h_L4 P60 PRN_6a8	0.87	3.57	< 0.0001
Exponential		n.a.	n.a.	n.a.

Parametric regression

Crown Fuel Load (CFL)

- → Best model: **linear**
- → Inputs: same LiDAR metrics with different formulation

Model type	LiDAR metrics	R ² (adjusted)	RMSE	p-value
Linear	PFR_a05	0.71	0.16	< 0.0001
Potential	PFR_a05	0.69	0.15	< 0.0001
Exponential		n.a.	n.a.	n.a.

Parametric regression

Crown Bulk Density (CBD)

- → Best model: exponential
- → Inputs: same LiDAR metrics with different formulation

Model type	LiDAR metrics	R ² (adjusted)	RMSE	p-value
Linear	n.a.	n.a.	n.a.	n.a.
Potential	PFR_a05	0.57	0.05	< 0.0001
Exponential	PFR_a05	0.61	0.03	< 0.0001

Random Forest

\rightarrow Model fitting

- input metrics optimized
- 1000 trees
- Importance of variable

\rightarrow Model selection

- pseudo R² (% variability explained)
- RMSE

R Software Packages: randomForest rfUtilities VSURF

Random Forest

Model	LiDAR metrics	pseudo R ²	RMSE
CBH	P10, P20	0.79	2.11
CFL	PFR_a4, P10	0.63	0.19
CBD	PFR_a05, PFR_a2, PFR_a4, PRN_8a12, h_IQ, h_MADmedian	0.65	0.03

Random Forest – Importance of variables

Geoestatistics

\rightarrow Universal Kriging

- Neuman-Jacobson method
- Input data: 30 sampling plots
- LiDAR as auxiliary data
- Variogram fit: spherical

\rightarrow Model selection

- LiDAR metrics: p-values of β coefficients
- Crossvalidation

Software GEOSTAT

Matlab application developed in INIA-CIFOR for geostatistical analysis

Geoestatistics

→ Universal Kriging

- CBH: excellent variogram fit
- High correlation with LiDAR data

Geoestatistics

- \rightarrow Crossvalidation
 - good accuracy (RMSE)
 - low bias

UK model	LiDAR metric	p-value	Nugget	Sill	Range	RMSE
СВН	P25	< 0.0001	0.98	3.64	2377.6	2.31
	CRR_05	0.0217				
CFL	PFR_a05	< 0.0001	0.03	<0.0001	862.5	0.18
CBD	PFR_a05	< 0.0001	0.004	0.001	800.0	0.04

Linear regression

Geostatistics

Crown Base Height (CBH)

Linear regression

Geostatistics

Crown Fuel Load (CFL)

Universidad de Alcalá

Linear regression

Geostatistics

Crown Bulk Density (CBD)

Comparison of methods

- → Main RMSE differences observed in CBH
- → Better performance of parametric regression, except CBD (similar to RF)
- → CBD: more difficult to model

	RMSE (%)				
Model	Parametric regression	Random Forest	Geostatistic (UK)		
CBH	1.42 (17%)	2.11 (25%)	2.31 (28%)		
CFL	0.16 (16%)	0.19 (19%)	0.18 (18%)		
CBD	0.03 (24%)	0.03 (24%)	0.04 (32%)		

Conclusions

Parametric regression

\rightarrow the <u>best modelling approach</u> for the <u>crown fuel variables</u> tested

Random Forest

→ <u>robust and accurate alternative</u> for crown fuel modelling when parametric regression is not applicable

Geostatistics

promising technique for field and LIDAR data integration, but increased sampling density is required to better account spatial correlation

Acknowlegments:

Centro de Montes y Aserradero de Valsaín (OAPN)

ORGANISMO AUTÓNOMO PARQUES NACIONALES

Thanks for your attention

